
https://its.ny.gov/authority-establish-enterprise-information-technology-policies-standards-and-guidelines
https://its.ny.gov/authority-establish-enterprise-information-technology-policies-standards-and-guidelines

3.0 Scope

This standard applies to all “State Entities” (SE), defined as “State Government” entities
as defined in Executive Order 117, established January 2002, or “State Agencies” as
defined in Section 101 of the State Technology Law. This includes employees and all
third parties (such as local governments, consultants, vendors, and contractors) that
use or access any ITS resource for which ITS the SE has administrative responsibility,
including systems managed or hosted by third parties on behalf of the ITS SE. While an
SE may adopt a different standard, it must include the requirements set forth in this one.

This standard covers all systems and software developed for the SE, including but not
limited to mobile, web, desktop, database, or mainframe regardless of their current
system life cycle phase. This includes all test, quality control, production, and other ad-
hoc systems that exist within or external to the State network. This standard equally
applies to SE systems that are developed by third-party entities with or without the
participation of State development staff. It is the responsibility of the SE to ensure
vendor supplied software, including custom or commercial off-the-shelf (COTS), is built
securely.

4.0 Information Statement

As per the NYS-P03-002 NYS Information Security Policy, all software written for or
deployed on SE systems must incorporate secure coding practices to avoid the
occurrence of common coding vulnerabilities and to be resilient to high-risk threats
before being deployed in production.

4.1 Secure Coding Practices
The development process must use secure coding practices and follow the NYS-S13-
001 Secure System Development Life Cycle Standard.

These secure coding practices can include, but are not limited to the following list:

• Identify security requirements upfront in the development life cycle and make
sure that subsequent development artifacts are evaluated for compliance with
those requirements.

• Anticipate threats to which the software will be subjected and then develop
threat mitigation strategies that address those threats.

• Validate input data from all data sources including, but not limited to, command
line arguments, network interfaces, environmental variables, and user-controlled
files. Proper input validation can eliminate most software vulnerabilities.

• Validate/limit output data sent to other systems such as command shells,
relational databases, and COTS components to prevent misusing functionality in
such systems.

https://its.ny.gov/information-security-policy
https://its.ny.gov/secure-system-development-life-cycle
https://its.ny.gov/secure-system-development-life-cycle

• Keep the code simple as complexity will increase the likelihood that errors will
be introduced.

• Use industry best practices for authentication methods and services to
validate users accessing the system and all resources within the system.

• All developed code must be stored in a secure repository.

• Whenever possible, use tested and approved code for common tasks rather
than create new, untested code.

• Restrict error handling from providing details of how the application works or
about the system upon which it resides.

• Generate log files per system requirements and the NYS-S14-005 Security
Logging Standard. These log files would be relevant to forensic analysis in the
event of an incident.

• Perform code scanning per NYS-S15-002 Vulnerability Management Standard
on both SE developed code, any open source components utilized by the SE,
and any third-party developed code.

• Use peer reviews by team members who can draw upon their respective
knowledge and experience to uncover potential issues.

• Document/comment the code for easier maintenance and remediation of any
security issues.

• Remain aware of current threats and vulnerabilities to the code and
respective technologies in use by the SE. Please see Exhibit 1 for some
examples.

4.2 Security Risk Assessments
Security risk assessments are required for use of current frameworks, common security
control libraries, and common application programming interfaces (APIs). This provides
a consistent approach that minimizes defects and prevents vulnerabilities from being
incorporated into SE code.

Code must be checked for errors throughout development and during maintenance in
order to prevent defects, or detect and remove them early, often realizing cost and
schedule benefits to the SE.

4.3 Vulnerability Scanning
The NYS-S15-002 Vulnerability Management Standard requires that systems undergo
source code analysis before moving between environments if there has been a change to
application code. As per NYS-P03-002 Information Security Policy and NYS-S15-002
Vulnerability Management Standard appropriate action must be taken to address
discovered vulnerabilities.

https://its.ny.gov/document/security-logging
https://its.ny.gov/document/security-logging
https://its.ny.gov/vulnerability-management
https://its.ny.gov/vulnerability-management
https://its.ny.gov/information-security-policy
https://its.ny.gov/vulnerability-management
https://its.ny.gov/vulnerability-management

This process is often done by:

• Peer Review – programmers with extensive knowledge and experience who did not
author the code review the code to ensure it follows established secure coding
principles and best practices.

• Automated Testing – automated programs can be used to check the security of an
application using static and dynamic analysis tools.

 Static analysis tools – analyze the source code of an application without
executing the application. Static code scanning is done throughout the
development process as well as prior to being moved into the production
environment.

 Dynamic analysis tools – analyze the application during execution in a
runtime environment.

When software development is outsourced, SEs must verify that the software assurance
model used by the vendor is in line with this standard through SE security testing and/or
contract requirements.

5.0 Compliance

This standard shall take effect upon publication. Compliance is required with all
enterprise policies and standards. ITS may amend its policies and standards at any
time; compliance with amended policies and standards is required.

If compliance with this standard is not feasible or technically possible, or if deviation
from this standard is necessary to support a business function, SEs shall request an
exception through the Chief Information Security Office (CISO) exception process.

6.0 Definitions of Key Terms

Except for terms defined in this standard, all terms shall have the meanings found in
http://www.its.ny.gov/glossary.

7.0 Contact Information

Submit all inquiries and requests for future enhancements to the standard owner at:

Chief Information Security Office
Reference: NYS-S13-002

NYS Office of Information Technology Services
1220 Washington Avenue, Building 5

Albany, NY 12226
Telephone: (518) 242-5200
Email: CISO@its.ny.gov

https://its.ny.gov/information-security-exception-policy
http://www.its.ny.gov/glossary
mailto:CISO@its.ny.gov

Statewide technology policies, standards, and guidelines may be found at the
following website: http://www.its.ny.gov/tables/technologypolicyindex

8.0 Revision History

This standard should be reviewed consistent with the requirements set forth in NYS-P08-
002 Authority to Establish State Enterprise Information Technology (IT) Policy, Standards
and Guidelines.

Date Description of Change Reviewer
10/18/2013 Original Standard Release Thomas Smith, Chief

Information Security
Officer

10/17/2014 Added reference to NYS Information Security
Policy, technical correction of “cluster ISO”
reference to “ISO/designated security
representative”

Deborah A. Snyder,
Acting Chief Information
Security Officer

03/10/2017 Updated Scope, contact information and
rebranded.

Deborah A. Snyder,
Deputy Chief Information
Security Officer

09/11/2018 Scheduled review – minor changes to Authority,
Scope, and title of office

Deborah A. Snyder,
Chief Information
Security Officer

12/01/2020 Updated second paragraph of Scope to include
all types of systems. Information Statement
updated to current industry and NYS standards.

Karen Sorady, Chief
Information Security
Officer

05/20/2021 Updated Scope language Karen Sorady, Acting
Chief Information
Security Officer

9.0 Related Documents

Open Web Application Security Project (OWASP) Top 10 Most Critical Application
Security Risks (‘OWASP Top 10’)
OWASP Proactive Controls
OWASP Mobile Security Project
OWASP Developer Cheat Sheets
OWASP Enterprise Security API
OWASP Secure Coding Practices – Quick Reference Guide
OWASP Secure Coding Practices Checklist
OWASP Source Code Analysis Tools
Common Weakness Enumeration (CWE) List

http://www.its.ny.gov/tables/technologypolicyindex
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API#tab=Home
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_Checklist
https://owasp.org/www-community/Source_Code_Analysis_Tools
http://cwe.mitre.org/data/index.html

CWE/SANS Top 25 Most Dangerous Software Errors ‘CWE/SANS Top 25’)
Carnegie Mellon Software Engineering Institute CERT Secure Coding Standards
US Department of Homeland Security Build Security In

http://cwe.mitre.org/top25/
http://www.cert.org/secure-coding/research/secure-coding-standards.cfm?
http://www.cert.org/secure-coding/research/secure-coding-standards.cfm?
https://buildsecurityin.us-cert.gov/

Exhibit 1: Coding Resources

Open Web Application Security Project) The OWASP Top 10 is authored by
OWASP, an open-source application security community project which aims to raise
security awareness of web application security risks. Although OWASP is focused on
web application security, the standards and controls presented by this organization are
generally also applicable to non-web based information systems.

In addition to the “Top 10” list, OWASP also produces the Enterprise Security API
(ESAPI) library and developer cheat sheets. The ESAPI library is an open source, web
application security control library designed to mitigate risks to web applications. The
ESAPI library provides a framework to implement code to address the risks listed within
the OWASP Top Ten project. The cheat sheets provide a concise collection of high
value information on specific web application security topics.

Additional information regarding OWASP, the ESAPI library and the Top Ten project is
available at https://www.owasp.org/.

Common Weakness Enumeration

The CWE/SANS Top 25 Most Dangerous Software Errors publication is the result of
collaboration between the SANS Institute, the MITRE Corporation, and many top
software security experts in the US and Europe. The publication is a list of the most
widespread and critical errors that can lead to serious vulnerabilities in software. They
are often easy to find, and easy to exploit. They are dangerous because they will
frequently allow attackers to completely take over the software, steal data, or prevent
the software from working at all.

The MITRE Corporation website provides detailed guidance to software programmers
for mitigating and avoiding each of the common weaknesses enumerated within the Top
25 list with the Common Weakness Enumeration List.

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API#tab=Home
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API#tab=Home
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/
http://cwe.mitre.org/data/index.html

