
Bad Cryptography
Bruce Barnett

Who am I?

• Security consultant @ NYSTEC

• 22 years a research scientist @ GE’s R&D Center

• 15 years software developer, system administrator
@ GE and Schlumberger

• I’m not a cryptographer

• I attended a lot of talks at Blackhat/DEFCON

• Then I took a course on cryptography………..

Who should attend this talk?
• Project Managers

• Computer programmers
• Those that are currently using cryptography

• Those that are thinking about using cryptography in
systems and protocols

• Security professionals
• Penetration testers who don’t know how to test

cryptographic systems and want to learn more

• … and anybody who is confused by cryptography

Something for everyone

What this presentation is …
• A gentle introduction to cryptography

• An explanation why cryptography can’t be just
“plugged in”

• Several examples of how cryptography can be done
incorrectly

• A brief description of why certain choices are bad
and how to exploit it.

• A checklist of warning signs that indicate when
“Bad Cryptography” is happening.

Example of Bad Cryptography!!!

Siren from snottyboy http://soundbible.com/1355-Warning-Siren.html

What this talk is not about

• No equations

• No certificates

• No protocols

• No mention of SSL/TLS/HTTPS

• No quantum cryptography

• Nothing that can cause headaches

• (Almost) no math used

Math: Exclusive Or (XOR) ⊕
Your Cat Your Roommates'

Cat
Will you have
kittens?

No kittens

No kittens

Note that this operator can
“go backwards” (invertible)

What is encryption and decryption?

EncryptionKey

Plain text

Cipher text

DecryptionKey

Plain text

Good Morning, Mr. Phelps

Good Morning, Mr. Phelps

LdD1eVzqAd30R9Jg
aY6ajsRCq3o6Sp83

Here is your first warning sign for
“Bad Cryptography”

Treating cryptography as an “esoteric art”

Bad Cryptography

You might see such terms as
• RSA (512, 1024, 2048, 4096)
• SHA (128,256,384)
• DES (56), 3DES(112, 168)
• MD5 (128)
• AES (128, 192, 256)

Why are different numbers used and why are they
important?

Not understanding the power of 2

How do you measure
cryptography?

21 == 2
22 == 4
24 == 16

http://en.wikipedia.org/wiki/Yardstick

The Power of 2 – the cryptographer’s yardstick

Number of Bits (N)
(2n)

Number of Combinations Real World example

16 65536 64K

32 4294967296 500 Megabytes
of stars in the universe

64 18446744073709551616 2,305,843,009 Gigabytes, or
2,305,843 Terabytes, or
2,305 Petabytes

128 3402823669209384634633746074317682114
56

256 1157920892373161954235709850086879078
5326998466564056403945758400791312963
9936

of atoms in the universe

512 1340780792994259709957402499820584612
7479365820592393377723561443721764030
0735469768018742981669034276900318581
8648605085375388281194656994643364900
6084096

1024 1797693134862315907729305190789024733
6179769789423065727343008115773267580
5500963132708477322407536021120113879
8713933576587897688144166224928474306
3947412437776789342486548527630221960
1246094119453082952085005768838150682
3424628814739131105408272371633505106
8458629823994724593847971630483535632
9624224137216

291
miles

of 1TB
drives

Bad Cryptography
Anything that generates non-random output

Thanks to Sesame Street
And http://boallen.com/random-numbers.html

System
#1

System
#2

One of these things is not like
the others,

One of these things just
doesn't belong,

Can you tell which thing is
not like the others

By the time I finish my song?

Bad Random Numbers (close-up)

Higher entropy means it’s harder to predict what will happen

Bad Cryptography

The difference between Random and
Pseudo-Random

Seed

If I can guess the Pseudo-random
seed, I can predict your future
“randomness”
Real world example of bad seeds

srand(0)
srand(42)
srand(time())
srand(12356)
srandom(0xDEADBEEF)

Random

Pseudo
Random

2 64 2 4096

2 64 => 2 24 or
2,305,843 TB=>16 MB

2 4096
Remember
the Power of 2!

The best Cryptography – The One
Time Pad

A very long secret message

⊕

KEY
Random
Number
used as
a key

Why doesn’t everyone use a OTP?

• If you want to get a Gigabyte of data, you need a
Gigabyte key.
• The length of the key is as long as the message

• The key can only be used once
• The key has to be securely transported to the

receiver
• If you can get the key to the receiver securely, then why

not just send the data?

• Currently used by securely transporting keys in
advance

Bad Cryptography

Frequency Analysis based on common letters, and
combination of letters, can decode messages.

The length of the “secret string” can be determined

The more the string is repeated, the easier it is to
decode the message

Using a repeated “secret” string as a one-
time-pad

Bad Cryptography

Random is not pseudo-random

A 2128 seed for a pseudo-random number generator
is not as secure as a 265,536 bit One Time Pad

Using a pseudo-random number generator
as a one-time-pad

Remember
the Power of 2!

See NIST SP800-108 - Key Derivation Functions

Bad Cryptography

Using a one-time-pad twice

⊕ =>

⊕ =>

⊕ =>

From http://cryptosmith.org/archives/70

Cleartext Key Ciphertext

Standard NIST Encryption Algorithms

• DES – Data Encryption Standard
• Developed in 1970’s by IBM

• 56, 112, 164 bit key length
• Also called Triple DES, 3DES

• AES – Advanced Encryption Standard
• Selected in 2001 from a list of encryption candidates

• Rijndael (Joan Daemen and Vincent Rijmen)

• 128, 192, 256 bit key length

http://en.wikipedia.org/wiki/Joan_Daemen
http://en.wikipedia.org/wiki/Vincent_Rijmen

Bad Cryptography

Computers are always getting faster and cheaper

Cryptographic attacks always get smarter

Assuming the cryptographic algorithm will
always be strong enough

Data Encryption Standard (DES)

• 1976 - Predicted DES cracker would
cost $20M

• 1997 - RSA Internet Cluster, up to
14,000 unique hosts per day, took 96
days

• 1998 - RSA, 39 days

• 1998- EFF used a FPGA accelerator
($250K), 56 hours

• 1999 - EFF, 22 hours, 15 minutes

• 2008 - COPACOBANA used 150
FPGA’s

• 2008 - Moxie Marlinspike used cloud
computing to crack MS-CHAP2 in 24
hours ($200)

$1

$100

$10,000

$1,000,000

$100,000,000

1970 1990 2010

Cost of DES Cracking

Cryptographer’s View on security

Always assume the attacker has all of the source
code

• Kerckhoffs's principle (1883)
• A cryptosystem should be secure even if everything

about the system, except the key, is public knowledge

• Claude Shannon’s Maxim (1949): “The enemy
knows the system“

All systems can be broken given enough time, which
can be estimated using the power of 2 as a yardstick

Cryptographer’s views on secret
algorithms

“Snake Oil” Cryptography

Signs of Bad Cryptography

• “Trust us. We are experts”

• “Proprietary”

• “Revolutionary technology”

• “Unbreakable”
• No one has broken it yet

• We have a reward that no one has collected

• “Military-grade encryption”

• “As strong as a one-time-pad”

If you see any of these phrases…

Bad Cryptography

Cryptographer’s attitude on encryptions algorithms
“Should be safe to use for 20 years as it will take 6
centuries to crack one 256-bit key, assuming no new
mathematical attacks are discovered”

Algorithm Implementation errors are common, even
for experts

Using experimental cryptography

Don’t implement your own Cryptographic algorithms

Solution:

NIST= National Institute of Standards and Technology

CMVP = Cryptographic Module Validation Program

FIPS = Federal Information Processing Standards

FIPS-140 – required for all systems purchased by US government

copy

Use FIPS-140-2 validated products
http://csrc.nist.gov/groups/STM/cmvp/validation.html

• FIPS-140-2
• Cryptographic Module Validation Program (CMVP)

• Provides a list of approved cryptographic products
• Both hardware and software

• 4 Levels of certification
• FIPS 140-2 Level 1

• All components must be "production-grade"
• Validated by third party

• FIPS 140-2 Level 2
• Adds requirements for physical tamper-evidence
• Adds role-based authentication.

• FIPS 140-2 Level 3
• Adds requirements for physical tamper-resistance of covers/doors
• Adds identity-based authentication
• Separated interfaces for "critical security parameters".

• FIPS 140-2 Level 4
• Zeroization upon compromise
• Formal model-based verification

copy

http://csrc.nist.gov/groups/STM/cmvp/validation.html

Watch out for these vendor terms
• The module has been designed for compliance to FIPS

140

• Module has been pre-validated and is on the CMVP
pre-validation list.

• The module will be submitted for testing.

• The module has been independently reviewed and
tested to comply with FIPS 140

• The module meets all the requirements of FIPS 140

• The module implements FIPS Approved algorithms;
including having algorithm certificates.

• The module follows the guidelines detailed in FIPS 140

These are FIPS-140 “Snake Oil” terms

Some of the Basic NIST-approved
cryptographic algorithms
• Encryption/decryption – provides confidentiality

• AES, Triple DES, Skipjack

• Message Authentication – message integrity
• MAC, HMAC

• Signing/verifying – performs authentication
• RSA, DSA, ECDSA

• Secure Hashing – One-way data compression
• Often used to store passwords
• SHA-1, SHA-256, (SHA-3)

• Random Number Generation
• Hash_DRBG, CTR_DRBG, HMAC_DRBG
• Dual_EC_DRBG – not recommended!!

http://www.keylength.com/ - shows recommended key size for any future year

http://www.keylength.com/

Next step

Let’s assume you use the following
• FIPS 140-2

• CAVP (Cryptographic Algorithm Validation Program)

• CMVP (Cryptographic Module Validation Program)

• CMVP FAQ

• Implementation Guidance

All of your problems are over. Right?

Meanwhile, inside their secret lab

AES -128

AES-128 encrypts 128 bits in a “block”

• That’s 16 bytes

What happens when you need to encrypt more than
16 bytes?

• You need to use a Block Mode of AES to handle
more than 16 bytes

• Which is the right one?

AES block modes of operation
• ECB – Electronic Cookbook mode

• CTR – Counter Mode

• CBC – Cipher Block Chaining mode

• CFB - Cipher Feedback mode

• OFB - Output Feedback mode

• PCBC - Propagating cipher-block chaining mode

• GCM - Galois/Counter Mode

• CCM – Counter with CBC-MAC mode

Assuming the mode has been FIPS validated,
which one do you use?

AES ECB Mode (Electronic Cookbook)
• Simplest “vanilla” mode of AES
• Same cleartext is encrypted as identical ciphertext

Please Please Me

PBbQ18 PBbQ18 SR5t4x

Notice that same messages are encrypted to the same values.
What happens when you encrypt more than a single block of data?

Bad Cryptography

Using Electronic Cookbook Mode for a large
block of data

Tux Tux encrypted using AES-ECB mode

AES Counter Mode (AES-CTR)

Nonce ⊕ Counter (0,1,2,…N)

AESKey

Plaintext[1] ⊕

Ciphertext[1]

This part
acts like a
One-time-pad

AES

Plaintext[2] ⊕

Ciphertext[2]

AES

Plaintext[3] ⊕

Ciphertext[3]

Counter
Block

Bad Cryptography

Using the same AES-CTR counter-block twice

⊕ =>

⊕ =>

⊕ =>

From http://cryptosmith.org/archives/70

Cleartext Key Ciphertext

AES CBC-Mode (Cipher Block Chaining)

AES

Initialization
Vector

⊕

Ciphertext

Key

S e n d m e $ 1 0 0 0 Cleartext

Decryption

4

S e n d m e $ 5 0 0 0

Modifying the Initialization Vector modifies the
plaintext in a predicable way!

If I retransmit the encrypted
message and XOR 00000100 into
this byte

I can change the cleartext here

Bad Cryptography

Problems with CBC:

• Initialization Vector is typically prepended to message
• Allows message modification using XOR if there is no integrity

checking of the IV

• No integrity checking => allows message modification

• Padding errors can be reported => Allows complete
decryption of message
• Padding Oracle Attack, POODLE

Using AES-CBC wrong

Bad Cryptography

If you sign, then encrypt, you allow unauthenticated
decryption attacks – perhaps one byte at a time.

Encrypt first, then sign.
Receiver authenticates first, then decrypts, which
eliminates padding oracle attacks

Performing Encryption and Authentication in
the wrong order

Bad Cryptography

Use Authenticated Encryption Modes – AE(AD)
ISO/IEC 19772:2009 suggests these modes of AES

• GCM - Galois/Counter Mode
• CCM – Counter with CBC-MAC mode
• OCB 2.0 – Offset Counter Block mode – patent issues
• Key Wrap
• EAX
• Encrypt-then-MAC (EtM)

NIST
GCM, CCM, CS, CWC, EAX, IACBC, IAPM, IOC, OCB, PCFB. SIV, XBCB, EAX’, RKC

FIPS
AES-CCM, AES-GCM

Also
• ChaCha20-Poly1305

Performing Authentication and encryption
as separate steps

http://en.wikipedia.org/wiki/OCB_mode
http://en.wikipedia.org/wiki/EAX_mode

So many other issues …

• Password storage

• Protecting Data at Rest

• Single Purpose keys vs. Multi-purpose keys

• Passwords != keys

• Key lifetime

• Weak Algorithms

• Timing Attacks

• Side Channel attacks

Bad Cryptography

Storing passwords incorrectly

Mistakes with password storage:
Storing passwords in cleartext!!!!
Truncating passwords!!!

Lesson: You should be using Passphrases, not passwords

Using a small character set
Not using a proper algorithm like BCRYPT, SCRYPT, PBKDF2

Hash mechanism vulnerable to a length extension attack

Not using salts
Not performing multiple iterations

Bad Cryptography

Not protecting data at rest

• Attackers can finding keys, cryptographic remnants, or
sensitive information in memory
• Forgetting to erase temporary cryptographic variables in

stack, in heap, in freed memory locations, on disk, etc.
• Heartbleed

• Memory scrapers in malware can look for data
structures and constants used for encryption
• Coldboot attack
• Aeskeyfind
• Firewire/thunderbolt/USB3 access to memory

Bad Cryptography

Keys should only be used for a single function:
Encryption - Confidentiality

Authentication - Integrity

Key Wrapping – used to encrypt other keys

This requires special modes

Never use a key for multiple purposes (except combined
modes like Authenticated encryption)

This can weaken/break the cryptography

Key revocation issues can cause havoc

Using multipurpose keys

Bad Cryptography

Encryption keys should be generated using real
random number generators

Passwords should decrypt the encryption keys

Using passwords as encryption keys

Bad Cryptography

Perfect Forward Security (PFS)
Knowledge of a session key should not reveal any
information about other sessions

Per-session keys should be generated

Different keys should be used for each direction

Using long-lasting (permanent) session keys

Bad Cryptography

• Broken
• DES, 3DES
• MD5 – hash collisions demonstrated in 2005
• RC4 - Bar mitzvah attack

• SHA1 (160 bits)
• 2 160 can be cracked with 2 69 attacks
• Vulnerable to a length extension attack
• Recommendation: SHA-256

• RSA-1024
• Use 4096 bits or higher, or ECC (elliptic curve cryptography)

Using weak or marginal algorithms

Bad Cryptography

Using code vulnerable to timing attacks

Pseudo-code example:
i=0;

while (i <= length(hpassword1)) {

if (hpassword1[i] != hpassword2[i]) {

return false;

i=i+1;

}

return true;

Timing reveals how many characters match!

Bad Cryptography

Ignoring other side channel attacks

• Power-monitoring attack — attacks that make use of varying
power consumption by the hardware during computation.

• Electromagnetic attacks

• Acoustic cryptanalysis — attacks that exploit sound
produced during a computation (rather like power analysis).

• Differential fault analysis — in which secrets are discovered
by introducing faults in a computation.

• Row hammer — in which off-limits memory can be changed
by accessing adjacent memory.

• Data remanence — in which sensitive data are read after
supposedly having been deleted.

http://en.wikipedia.org/wiki/Power_analysis
http://en.wikipedia.org/wiki/Acoustic_cryptanalysis
http://en.wikipedia.org/wiki/Differential_fault_analysis
http://en.wikipedia.org/wiki/Row_hammer
http://en.wikipedia.org/wiki/Data_remanence

In conclusion
Cryptography is hard

very hard

even for experts

Use CMVP-certified products, like a HSM (Hardware
Security Module)

Test your systems for cryptographic weaknesses

References

• NIST CMVP http://csrc.nist.gov/groups/STM/cmvp/validation.html

• Security of Random Number Generation: An Annotated Bibliography
• http://www.cs.virginia.edu/~rjg7v/annotated.html

• 10 Cryptography Mistakes Amateurs Make
• http://www.lauradhamilton.com/10-cryptography-mistakes-amateurs-make

• Cryptography I & II (Stanford) via Coursera

• Applied Cryptography (University of Virginia) via Udacity

• Cryptography and Cryptanalysis (MIT) via MIT Open Courseware

• Matasano crypto challenges - http://cryptopals.com/

• John Downey's ebook, "Pragmatic Cryptography"

• Cryptography Pitfalls at OSCON 2013 -
https://speakerdeck.com/jtdowney/cryptography-pitfalls-at-oscon-2013

• Matthew Green’s blog - http://blog.cryptographyengineering.com/ -

http://csrc.nist.gov/groups/STM/cmvp/validation.html
http://www.cs.virginia.edu/~rjg7v/annotated.html
http://www.lauradhamilton.com/10-cryptography-mistakes-amateurs-make
http://cryptopals.com/
https://pragmaticcrypto.com/
https://speakerdeck.com/jtdowney/cryptography-pitfalls-at-oscon-2013
http://blog.cryptographyengineering.com/

More references

• Using Encryption and Authentication Correctly
• https://paragonie.com/blog/2015/05/using-encryption-and-

authentication-correctly

• The Cryptographic Doom Principle - Moxie Marlinspike
• http://www.thoughtcrime.org/blog/the-cryptographic-doom-

principle/

• “Beware of Snake Oil” – Phil Zimmerman
• https://www.philzimmermann.com/EN/essays/SnakeOil.html

• “Security Pitfalls in Cryptography” – Bruce Schneier
• https://www.schneier.com/essays/archives/1998/01/security

_pitfalls_in.html

https://paragonie.com/blog/2015/05/using-encryption-and-authentication-correctly
http://www.thoughtcrime.org/blog/the-cryptographic-doom-principle/
https://www.philzimmermann.com/EN/essays/SnakeOil.html
https://www.schneier.com/essays/archives/1998/01/security_pitfalls_in.html

