
Encryption, Hashing, and
Complexity:

Oh My !
James L. Antonakos
WhiteHat Forensics

Overview

• Encryption, hashing, and complexity are important
topics related to information security.

• Encryption is used to provide confidentiality to
information (hashing is able to do this to some
extent as well).

• Hashing is used to help verify the integrity of
information (has it changed?).

• Complexity is associated with the ease or difficulty of
cracking an encryption code.

Topics

• Encryption Techniques
• The Caesar Shift
• Transposition Encryption
• Using a Keyword with Substitution Encryption
• A Slight Problem Here
• So Make it Harder
• But Time is Relative

Topics

• A While?
• Key Size
• How many Bits is Enough?
• Now, what about the Technique?
• All right then, but what is Hashing?
• Hashing Examples
• Malware and Hashing

Encryption Techniques

• The foundation of all secure data transmission is
an encryption technique. There are many
techniques, some better suited for one type of
data, others for other types of data.

• But isn’t data just data? No. There is data that
represents text, data that represents numbers,
data that represents code, etc, and each have
characteristics that can be exploited both for
compression and encryption.

• Let us take a short tour of several different basic
techniques.

Encryption Techniques

Encryption Techniques
Block

Stream

The Caesar Shift
• This simple encryption technique shifts the alphabet a

certain number of letters one way or the other, with
wraparound at each end. Here is an example of a
Caesar shift using 5 letters of shift:

• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• FGHIJKLMNOPQRSTUVWXYZABCDE

• So, an A becomes an F, an E becomes a J, etc, by

locating the letter to be encrypted on the first row and
writing down the shifted letter from the second row.

The Caesar Shift

• ZSIJWXYFSI ?

• To decode, look up each letter of the encrypted message in

the second row and write down the decrypted letter from the
first row.

• UNDERSTAND ?

• Even though this is a simple technique, it is useful and easy to

implement in software. It is also easy to share the ‘key’ for the
technique… you just need to know how many letters to shift.

Substitution Encryption

• In substitution encryption you just replace each
original character with one from its position
within the encryption alphabet.

• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• QPWOEIRUTYALSKDJFHGZMXNCBV

• The difficulty here is the entire encryption

alphabet must be shared with the receiver.

Transposition Encryption
• This technique does not use a encryption alphabet to transform the

letters, but instead rearranges the letters of the message in a
specific order, while at the same time making the message
unreadable.

• Consider this sample message:

• JOHN LIKES TO EAT HIS MILK AND BREAD

• To help keep track of the blanks between words I am putting in

periods. It is not necessary, but will help visualize what is going on.

• JOHN.LIKES.TO.EAT.HIS.MILK.AND.BREAD

Transposition Encryption
• Now we write the letters of the message down in a two-dimensional array (also called a matrix) of

letters as shown here, with 6 letters (or periods) on each row of the array.

• JOHN.L
• IKES.T
• O.EAT.
• HIS.MI
• LK.AND
• .BREAD

• The 36 letters (and periods) in the message fill the 6 by 6 matrix of letters exactly. It is a simple

matter to add extra blanks (or periods) at the end of the message if the original message is not long
enough to fill the matrix.

• Now here comes the transposition part of the technique. We wrote the letters into the
matrix one row at a time but we read the letters out one column at a time, as in:

• JIOHL.OK.IKBHEES.RNSA.AE..TMNALT.IDD

Transposition Encryption

• Now, replacing the periods with blank spaces again gives us the

encrypted message:

• JIOHL OK IKBHEES RNSA AE TMNALT IDD

• Compare the original message with its transposition encrypted

counterpart:

• JOHN LIKES TO EAT HIS MILK AND BREAD
• JIOHL OK IKBHEES RNSA AE TMNALT IDD

• As with the other techniques, this method is easy and fast to

implement.

Using a Keyword with Substitution Encryption

• To make the sharing of the key easier, you can use a keyword. The keyword must
contain all unique letters, no repeats allowed. Here are some sample keywords,
and their resulting second rows. Do you see how the second rows are filled in?

• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• SUPERBOWLACDFGHIJKMNQTVXYZ

• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• TRICKYABDEFGHJLMNOPQSUVWXZ

• ABCDEFGHIJKLMNOPQRSTUVWXYZ
• ZENITHABCDFGJKLMOPQRSUVWXY

• When writing the second row of letters after the keyword, fill in the remaining

letters in order. Now you just need to share the keyword to know how to decode
the message.

A Slight Problem Here

• Unfortunately, all three of the techniques presented
have a limitation: they are easy to crack.

• You can make cracking a message more difficult by
using two or more techniques, but the final result
will still be crackable within a short period of time.

So Make It Harder
• Add some bit shifting and the Exclusive-OR operation into the

mix and now you’ve made it more difficult to find patterns.

So Make It Harder
• Add the Exclusive-OR operation into the nix and now you’ve

made it more difficult to find patterns.

So Make It Harder
• A malware writer used a short XOR decrypting loop at the beginning of the

code. The call $+5 instruction pushes a return address onto to the stack, but
this address is the address of the next instruction pop ecx. So, these two
instructions together give the program a way to determine the Instruction
Pointer, no matter where in memory the code is loaded and executed. How
clever of the malware writer to do this and to encrypt the payload!

So Make It Harder
• Note that this technique of encrypting payload codes is one of the

techniques used to hide the payload code. Another technique is to
rotate the bits in each byte 1, 2, or more places as well. Now,
suppose you suspect that the encrypted code contains a URL string
somewhere that begins with the characters http. A nice tool called
XORsearch will take an input file (the encrypted code in our case)
and an input string to search for when trying every combination of
XOR values from 0 to FF and every rotation pattern. Here is what
XORsearch finds:

But Time is Relative
• It sure is. So, what do I mean by “within a short period of time.”

Well, a few seconds is short, so is one minute, a few hours, or even
several days or weeks. Why? All may not be short depending on
what is being protected by encryption. For a newspaper scramble
puzzle, some people may crack it in a few minutes, others in a few
hours, while a few may chip away at it for days or weeks before
breaking the code.

• But if the data we have encrypted represents an electronic banking
transaction, we may not want that message to be cracked for a very
long time. But what is a long time? 100 years? 10,000 years? One
billion years?

• Ah, we see the difficulties of talking about short or long periods of
time. But if it were my own personal encrypted information, I feel
that keeping someone waiting for a billion years would be strong
enough encryption for me.

But Time is Relative
• So, let’s look at an example of how we can improve the strength of our encryption method.

Consider the following group of numbers, which represents the “message” we want to encrypt:

• 100 23 214 86

• Now, I am going to pick a number from 1 to 16. I am not going to tell you the number. Then I am

going to divide each number in the message by my secret number and keep track of the quotient
and remainder:

• 7 2 1 9 15 4 6 2

• Now a switcheroo:

• 2 7 9 1 4 15 2 6

• and back to just four numbers, using my secret number as a multiplier now, to get the encrypted

data:

• 35 127 71 34

But Time is Relative

• Once again, let’s compare the original data with the encrypted data:

• 100 23 214 86
• 35 127 71 34

• Is it possible to see any kind of pattern between the two groups of numbers? Any clue as to my

secret number? Hopefully not… but you would agree I think that since my secret number is
between 1 and 16 you could try every value until one of them works.

• I will save you the trouble, my secret number is 14. To see how I use 14 to turn 100 into 35, watch
this:

• 100 divided by 14 equals 7 with a remainder of 2. Check: 7 times 14 equals 98. 98 plus 2 equals

100.

• Ok, now I swapped the 7 and 2 to get 2 and 7.

• Then I multiplied 2 by 14 to get 28 and added 7 to get 35.

But Time is Relative
 Well, you might say, this technique is easy to crack too. Just try all the

numbers.

• But remember this: Even though I did not tell you my secret number in the

beginning, I told you I was dividing the numbers in the original message
and also switching their quotient and remainders. So, you knew part of
the technique, which helps you while you are attempting to crack it. If I
can keep the secret number and the technique secret as well, that is even
better because then you will be hard pressed to see a pattern.

• For now, let’s concentrate on the secret number. A range of 1 to 16 is not a
very big range and you will have no trouble cracking the code in a
relatively short period of time. So, we need to increase the range. How
about 1 to 100 trillion? That is much bigger. Think about the poor person
who has to try to crack that numeric code, even knowing the
multiply/divide switcheroo method? Which number out of 100 trillion
choices is the secret number? That will keep the person, or even a
computer, busy for a while.

A While?
• Ok, what do I mean by “a while?”

• Computers are very fast, but humans are slow. We do not like to think about things

like nanoseconds. Hard to appreciate. But tell us a message takes 5 seconds to
crack, and we understand that. Or telling us that a message will take 250 million
centuries to crack is also something we can appreciate. Which message is
uncrackable? I think you get the idea.

• So, let’s consider a personal computer available today. Maybe you have a
dual-core Pentium at 4 GHz (Giga Hertz, 4 billion clock cycles each second). That
means its clock period, the time of one clock cycle, is 4 billionths of a second, or
0.25 nanoseconds.

• Now, the Pentium will require from 1 to 4 or more clock cycles to execute an
instruction. Let us pretend it takes 2.5 clock cycles, on average, to execute an
instruction. And, let us further assume that it takes 16 instructions to perform a
decryption on one symbol, if we have the correct secret key. This means we can
decrypt one symbol in 10 nanoseconds. That seems a reasonable amount of time
and is probably much shorter than what would actually be required, so we are
looking at a best-case scenario here.

A While?
• Now, let us further assume that after 10 nanoseconds and we have

decoded one symbol that we can look at that symbol and tell if it is
correct. If it is not correct, then we have to choose a new key and try
decrypting the same symbol again. In effect, we can now decrypt and
check one symbol in 10 nanoseconds. We really can’t do this, but we are
pretending.

• So, if we can decrypt and check one symbol in 10 nanoseconds, we can
check 100 million keys in one second. Each key we try fails and we move
on to the next key. Remember, we really can not check 100 million keys in
one second with our 4 GHz Pentium because we are pretending.

• Ok, I mentioned 100 trillion choices before. Let’s look at that number. 100
trillion keys divided by the ability to check 100 million keys in one second
gives 1 million seconds, which works out to 11 days, 13 hours, 46 minutes,
and 40 seconds. I said that 100 trillion choices (keys) would keep the
person or computer busy “for a while.” Do you agree that over 11 and a
half days is “a while?”

A While?
• Would you also agree that, since we have been pretending, that it will

actually take longer than 11 and a half days to crack the code? How much
longer does not matter, even if it is 10 times longer or 100 times longer,
because two things are true:

• There is a limit to how far off my estimate was. Maybe it would take 175
times longer, but I assure you it will not take 500 times longer, or 5000
times longer.

• Some people are willing to wait. So, even if it takes a month, or a year, or
maybe a lifetime, we really need to think hard about what a long time is.

• Because of these two reasons, we can not get excited about breaking

codes just because a 5 GHz Pentium, or a 50 GHz Pentium, or even a 5000
GHz Pentium rolls out. We can easily choose a key that is so large that
even the fastest computers, or even cluster of computers such as a
supercomputer, will not be able to break the code.

Key Size
• It is useful to represent the size of a secret

number key by its bit size. The more bits there
are in a key, the higher the range of numbers
that can be represented. Look at the table to get
an idea.

• The equation is simple:

• where K is the number of bits in the key and R is

the highest number in the range.

• Remember our 100 trillion choices from before?

How many bits are there in that key? From the
table we can see that the key size falls
somewhere between 32 and 64 bits. But how
many do we need, exactly?

Key Size
• Again, we have a simple formula:

• where N is the number of key choices and K is the number of bits needed to

represent the key.
• Unfortunately, many people do not know how to perform a base-2 logarithm. So,

and I am sorry to say this, from Calculus, we have an equivalent equation:

• where the log is now just the base-10 log available on all calculators, and also on

the Calculator toll in Windows.
• So, for a key range of 100 trillion, we have:

• Yep… 47 is between 32 and 64.

How many Bits is Enough?
• That is the big question. So far, by pretending, we have seen that a 47-bit

key can be cracked in around 11 and a half days. One initial encryption
standard used a 56-bit key. Based on our pretend assumptions, that key
would require over 22 years to crack.

• How long for the 64-bit key, using our same assumptions? I come up with
an astonishing 58 centuries! Does that seek safe enough to you? It should
be. I would be happy with 58 centuries.

• But others are not, such as governments, large corporations, and
terrorists. They want even stronger encryption. 1024 bits. 4096 bits.
Staggeringly large key spaces.

• Why? Because the 58 centuries we get for the 64 bit key have actually
been reduced to around 5 minutes, as researches and hackers have
discovered techniques that analyze special packets within a encrypted
stream and mathematically deduce the key. Magic with math.

• So, maybe now 1024 bits or more looks a lot more attractive now.

How many Bits is Enough?

• Here is a list of encryption algorithms and
some of their key sizes.

Now, What About the Technique?
• The size of the key is one factor affecting the time required to crack an encryption

code. Another factor is the algorithm used in the encryption process. Let’s look at
some simple algorithms and see how their performance can be classified.

• Here is one way to implement the Caesar Shift:

• for (p = 0; p < N; p++)
• {
• charout = alphabet[charin[p] + shiftval];
• }

• where N is the length of the charin data. The important thing here is not the

statement that finds the new charout value, but rather the fact that the for-loop
makes N passes through the data. We say this code has O(n) execution (Order-n).

Now, What About the Technique?
• To appreciate what O(n) means, let’s look at another algorithm that has an

O(n2) execution time:

• for (x = 0; x < N; x++)
• for (y = 0; y < N; y++)
• {
• statements…
• }

• In this nested loop, the inner loop (the y variable loop) makes N passes

through the statements for every one pass through the outer loop (the x
variable loop). Overall, the statements inside the inner loop will execute
N*N, or N2 times. So, this type of algorithm is O(n2). Naturally, we also
have algorithms that are O(n3), O(n4), etc.

Now, What About the Technique?

• Even more complex algorithms may have
O(2N) execution time. Look at the following table
to see why we get worried when the algorithm is
O(2N):

Now, What About the Technique?

• So why do we worry about the complexity of an
encryption algorithm?

• Complexity is good if we are thinking about
someone trying to crack our code.

• Complexity is bad if we are using the encryption
in real time (such as in a VPN tunnel)…. We must
not disregard the encryption / decryption
overhead at each end of the tunnel.

All Right Then, But What is Hashing?

• Encryption and hashing are different things, but both provide a
secure method of transforming information. The difference is that
data that is encrypted may be decrypted at a later time, using the
secret key. But when a message is hashed, it is converted into a
different form and can not be turned back (Unhashed? Dehashed?)
into the original message.

• As it turns out, this is OK and actually quite useful. First, the
time to encrypt a message and the time to hash a message may be
drastically different, with the hash typically taking less time. Also,
there are times when we are not interested in recovering the
original message. For example, when you enter a password on a
web page, you can either encrypt the password and compare the
result with a stored list of encrypted passwords, or you can hash
the password and search a list of hashed passwords. Since you do
not need to ever recover the original password, why use
encryption?

All Right Then, But What is Hashing?

• As a simple example, suppose our hash algorithm takes an input
string and adds the ASCII values of the first letter in the string, the
middle letter, and the last letter. Then we save only the lower 6 bits
of the sum, giving a range of 0 to 63 for the hash value.

• Here are some examples:

All Right Then, But What is Hashing?

• Whoops ! Do you see that two different strings (GREEN
and EAT) hash to the same value? This is called a
collision. By itself a collision is not a problem, because
we can modify the data structure where we store our
hash values to keep stack of more than one string per
hash value. What is disturbing about collisions is that
you can use a different string than is intended to obtain
the same hash value. What this means is that if your
password is saved as a hash value, it may be possible
for someone to use a different sequence of symbols to
get into your account, without having to use your exact
password.

All Right Then, But What is Hashing?

• This brings up an even more disturbing point. We
can not predict in advance when a collision might
occur or how often. It all depends on how well
you construct your hash algorithm. You will
hopefully agree in this case that only using the
first, middle, and last symbols of the input string
may not lead to a good hash value since we are
ignoring other symbols in the string. So, a better
hash algorithm would add all the ASCII values of
the string symbols.

All Right Then, But What is Hashing?

• An even better hash algorithm will combine the string
symbols in different, creative ways and result in even
larger hash values, further reducing the number of
collisions.

• Two widely used hash algorithms are MD5 (Message
Digest 5) and SHA1 (Secure Hash Algorithm 1). MD5
creates a 128 bit hash and SHA1 creates a 160 bit hash.
Here are the hash values from each algorithm for a
sample data file (actually for the file containing these
lecture notes, before adding the screen shot of the
hash program and writing any more text:

Hashing Examples
• Short ASCII text file for testing hashing utility. Note the ‘0’

characters at the beginning and end.

Hashing Examples
• MD5 and SHA1 hash values for the sample text file:

Hashing Examples
• Now I just change the ‘0’ on the first line to a ‘1’. Note that

this is a one bit change !

Hashing Examples
So cool ! The MD5 and SHA1 hash values are widely different, not just a
little different. Perhaps this is one reason why MD5 and SHA1 are accepted
algorithms for use verifying the integrity of digital forensic evidence.

Hashing Examples
• Now the ‘1 on the first line is changed back to a ‘0’ and the ‘0’ on

the last line is changed to a ‘1’. Another one bit change !

Hashing Examples
• And again we see radically different MD5 and SHA1 hashes... showing

that it matters where the data is changed inside a file in addition to
how the data is changed.

Malware and Hashing
• Malware writers use hashing methods to obscure their

code and make it harder to reverse engineer.

Malware and Hashing
• The hashing routine creates 32-bit hash codes based on the

names of exported DLL functions:

Malware and Hashing
• Sequence of DLL calls performed during execution of malware to

download a file from the Internet and execute it.

Thank you !

James L. Antonakos
james@whitehatforensics.com

(607) 765-2686

	Encryption, Hashing, and Complexity:�Oh My !
	Overview
	Topics
	Topics
	Encryption Techniques
	Encryption Techniques
	Encryption Techniques
	The Caesar Shift
	The Caesar Shift
	Substitution Encryption
	Transposition Encryption
	Transposition Encryption
	Transposition Encryption
	Using a Keyword with Substitution Encryption
	A Slight Problem Here
	So Make It Harder
	So Make It Harder
	So Make It Harder
	So Make It Harder
	But Time is Relative
	But Time is Relative
	But Time is Relative
	But Time is Relative
	A While?
	A While?
	A While?
	Key Size
	Key Size
	How many Bits is Enough?
	How many Bits is Enough?
	Now, What About the Technique?
	Now, What About the Technique?
	Now, What About the Technique?
	Now, What About the Technique?
	All Right Then, But What is Hashing?
	All Right Then, But What is Hashing?
	All Right Then, But What is Hashing?
	All Right Then, But What is Hashing?
	All Right Then, But What is Hashing?
	Hashing Examples
	Hashing Examples
	Hashing Examples
	Hashing Examples
	Hashing Examples
	Hashing Examples
	Malware and Hashing
	Malware and Hashing
	Malware and Hashing
	Slide Number 49

