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Overview 

• Encryption, hashing, and complexity are important 
topics related to information security.  

• Encryption is used to provide confidentiality to 
information (hashing is able to do this to some 
extent as well).  

• Hashing is used to help verify the integrity of 
information (has it changed?). 

• Complexity is associated with the ease or difficulty of 
cracking an encryption code. 
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Encryption Techniques 

• The foundation of all secure data transmission is 
an encryption technique. There are many 
techniques, some better suited for one type of 
data, others for other types of data.  

• But isn’t data just data? No. There is data that 
represents text, data that represents numbers, 
data that represents code, etc, and each have 
characteristics that can be exploited both for 
compression and encryption. 

• Let us take a short tour of several different basic 
techniques. 
 



Encryption Techniques 



Encryption Techniques 
Block 

Stream 



The Caesar Shift 
•  This simple encryption technique shifts the alphabet a 

certain number of letters one way or the other, with 
wraparound at each end. Here is an example of a 
Caesar shift using 5 letters of shift: 

 
• ABCDEFGHIJKLMNOPQRSTUVWXYZ 
• FGHIJKLMNOPQRSTUVWXYZABCDE 
 
• So, an A becomes an F, an E becomes a J, etc, by 

locating the letter to be encrypted on the first row and 
writing down the shifted letter from the second row. 
 
 



The Caesar Shift 
 
• ZSIJWXYFSI ? 
 
• To decode, look up each letter of the encrypted message in 

the second row and write down the decrypted letter from the 
first row. 

 
• UNDERSTAND ? 
 
• Even though this is a simple technique, it is useful and easy to 

implement in software. It is also easy to share the ‘key’ for the 
technique… you just need to know how many letters to shift. 



Substitution Encryption 

• In substitution encryption you just replace each 
original character with one from its position 
within the encryption alphabet. 

 
• ABCDEFGHIJKLMNOPQRSTUVWXYZ 
• QPWOEIRUTYALSKDJFHGZMXNCBV 
 
• The difficulty here is the entire encryption 

alphabet must be shared with the receiver. 



Transposition Encryption 
• This technique does not use a encryption alphabet to transform the 

letters, but instead rearranges the letters of the message in a 
specific order, while at the same time making the message 
unreadable. 

• Consider this sample message: 
 
• JOHN LIKES TO EAT HIS MILK AND BREAD 
 
• To help keep track of the blanks between words I am putting in 

periods. It is not necessary, but will help visualize what is going on. 
 
• JOHN.LIKES.TO.EAT.HIS.MILK.AND.BREAD 
 



Transposition Encryption 
• Now we write the letters of the message down in a two-dimensional array (also called a matrix) of 

letters as shown here, with 6 letters (or periods) on each row of the array. 
 
• JOHN.L 
• IKES.T 
• O.EAT. 
• HIS.MI 
• LK.AND 
• .BREAD 
 
• The 36 letters (and periods) in the message fill the 6 by 6 matrix of letters exactly. It is a simple 

matter to add extra blanks (or periods) at the end of the message if the original message is not long 
enough to fill the matrix. 

•  Now here comes the transposition part of the technique. We wrote the letters into the 
matrix one row at a time but we read the letters out one column at a time, as in: 

 
• JIOHL.OK.IKBHEES.RNSA.AE..TMNALT.IDD 
 



Transposition Encryption 
  
• Now, replacing the periods with blank spaces again gives us the 

encrypted message: 
 

• JIOHL OK IKBHEES RNSA AE  TMNALT IDD 
 
• Compare the original message with its transposition encrypted 

counterpart: 
 
• JOHN LIKES TO EAT HIS MILK AND BREAD 
• JIOHL OK IKBHEES RNSA AE  TMNALT IDD 
 
• As with the other techniques, this method is easy and fast to 

implement. 
 



Using a Keyword with Substitution Encryption 

• To make the sharing of the key easier, you can use a keyword. The keyword must 
contain all unique letters, no repeats allowed. Here are some sample keywords, 
and their resulting second rows. Do you see how the second rows are filled in? 

 
• ABCDEFGHIJKLMNOPQRSTUVWXYZ 
• SUPERBOWLACDFGHIJKMNQTVXYZ 
 
• ABCDEFGHIJKLMNOPQRSTUVWXYZ 
• TRICKYABDEFGHJLMNOPQSUVWXZ 
 
• ABCDEFGHIJKLMNOPQRSTUVWXYZ 
• ZENITHABCDFGJKLMOPQRSUVWXY 
 
• When writing the second row of letters after the keyword, fill in the remaining 

letters in order. Now you just need to share the keyword to know how to decode 
the message. 
 



A Slight Problem Here 

• Unfortunately, all three of the techniques presented 
have a limitation: they are easy to crack. 

• You can make cracking a message more difficult by 
using two or more techniques, but the final result 
will still be crackable within a short period of time. 



So Make It Harder 
• Add some bit shifting and the Exclusive-OR operation into the 

mix and now you’ve made it more difficult to find patterns. 



So Make It Harder 
• Add the Exclusive-OR operation into the nix and now you’ve 

made it more difficult to find patterns. 



So Make It Harder 
• A malware writer used a short XOR decrypting loop at the beginning of the 

code. The call $+5 instruction pushes a return address onto to the stack, but 
this address is the address of the next instruction pop ecx. So, these two 
instructions together give the program a way to determine the Instruction 
Pointer, no matter where in memory the code is loaded and executed. How 
clever of the malware writer to do this and to encrypt the payload! 



So Make It Harder 
• Note that this technique of encrypting payload codes is one of the 

techniques used to hide the payload code. Another technique is to 
rotate the bits in each byte 1, 2, or more places as well. Now, 
suppose you suspect that the encrypted code contains a URL string 
somewhere that begins with the characters http. A nice tool called 
XORsearch will take an input file (the encrypted code in our case) 
and an input string to search for when trying every combination of 
XOR values from 0 to FF and every rotation pattern. Here is what 
XORsearch finds: 



But Time is Relative 
• It sure is. So, what do I mean by “within a short period of time.” 

Well, a few seconds is short, so is one minute, a few hours, or even 
several days or weeks. Why? All may not be short depending on 
what is being protected by encryption. For a newspaper scramble 
puzzle, some people may crack it in a few minutes, others in a few 
hours, while a few may chip away at it for days or weeks before 
breaking the code. 

• But if the data we have encrypted represents an electronic banking 
transaction, we may not want that message to be cracked for a very 
long time. But what is a long time? 100 years? 10,000 years? One 
billion years? 

• Ah, we see the difficulties of talking about short or long periods of 
time. But if it were my own personal encrypted information, I feel 
that keeping someone waiting for a billion years would be strong 
enough encryption for me. 

 



But Time is Relative 
• So, let’s look at an example of how we can improve the strength of our encryption method. 

Consider the following group of numbers, which represents the “message” we want to encrypt: 
 
• 100 23 214 86 
 
• Now, I am going to pick a number from 1 to 16. I am not going to tell you the number. Then I am 

going to divide each number in the message by my secret number and keep track of the quotient 
and remainder: 

 
• 7 2 1 9 15 4 6 2 
 
• Now a switcheroo: 
 
• 2 7 9 1 4 15 2 6 
 
• and back to just four numbers, using my secret number as a multiplier now, to get the encrypted 

data: 
 
• 35 127 71 34 
 



But Time is Relative 
  
• Once again, let’s compare the original data with the encrypted data: 
 
• 100 23 214 86 
• 35 127 71 34 
 
• Is it possible to see any kind of pattern between the two groups of numbers? Any clue as to my 

secret number? Hopefully not… but you would agree I think that since my secret number is 
between 1 and 16 you could try every value until one of them works. 

• I will save you the trouble, my secret number is 14. To see how I use 14 to turn 100 into 35, watch 
this: 

 
• 100 divided by 14 equals 7 with a remainder of 2. Check: 7 times 14 equals 98. 98 plus 2 equals 

100. 
 
• Ok, now I swapped the 7 and 2 to get 2 and 7. 
 
• Then I multiplied 2 by 14 to get 28 and added 7 to get 35. 
 



But Time is Relative 
 Well, you might say, this technique is easy to crack too. Just try all the 

numbers. 
 
• But remember this: Even though I did not tell you my secret number in the 

beginning, I told you I was dividing the numbers in the original message 
and also switching their quotient and remainders. So, you knew part of 
the technique, which helps you while you are attempting to crack it. If I 
can keep the secret number and the technique secret as well, that is even 
better because then you will be hard pressed to see a pattern. 

• For now, let’s concentrate on the secret number. A range of 1 to 16 is not a 
very big range and you will have no trouble cracking the code in a 
relatively short period of time. So, we need to increase the range. How 
about 1 to 100 trillion? That is much bigger. Think about the poor person 
who has to try to crack that numeric code, even knowing the 
multiply/divide switcheroo method? Which number out of 100 trillion 
choices is the secret number? That will keep the person, or even a 
computer, busy for a while. 



A While? 
• Ok, what do I mean by “a while?” 
 
• Computers are very fast, but humans are slow. We do not like to think about things 

like nanoseconds. Hard to appreciate. But tell us a message takes 5 seconds to 
crack, and we understand that. Or telling us that a message will take 250 million 
centuries to crack is also something we can appreciate. Which message is 
uncrackable? I think you get the idea. 

•  So, let’s consider a personal computer available today. Maybe you have a 
dual-core Pentium at 4 GHz (Giga Hertz, 4 billion clock cycles each second). That 
means its clock period, the time of one clock cycle, is 4 billionths of a second, or 
0.25 nanoseconds. 

•  Now, the Pentium will require from 1 to 4 or more clock cycles to execute an 
instruction. Let us pretend it takes 2.5 clock cycles, on average, to execute an 
instruction. And, let us further assume that it takes 16 instructions to perform a 
decryption on one symbol, if we have the correct secret key. This means we can 
decrypt one symbol in 10 nanoseconds. That seems a reasonable amount of time 
and is probably much shorter than what would actually be required, so we are 
looking at a best-case scenario here. 



A While? 
• Now, let us further assume that after 10 nanoseconds and we have 

decoded one symbol that we can look at that symbol and tell if it is 
correct. If it is not correct, then we have to choose a new key and try 
decrypting the same symbol again. In effect, we can now decrypt and 
check one symbol in 10 nanoseconds. We really can’t do this, but we are 
pretending. 

• So, if we can decrypt and check one symbol in 10 nanoseconds, we can 
check 100 million keys in one second. Each key we try fails and we move 
on to the next key. Remember, we really can not check 100 million keys in 
one second with our 4 GHz Pentium because we are pretending. 

• Ok, I mentioned 100 trillion choices before. Let’s look at that number. 100 
trillion keys divided by the ability to check 100 million keys in one second 
gives 1 million seconds, which works out to 11 days, 13 hours, 46 minutes, 
and 40 seconds. I said that 100 trillion choices (keys) would keep the 
person or computer busy “for a while.” Do you agree that over 11 and a 
half days is “a while?” 

 



A While? 
• Would you also agree that, since we have been pretending, that it will 

actually take longer than 11 and a half days to crack the code? How much 
longer does not matter, even if it is 10 times longer or 100 times longer, 
because two things are true: 
 

• There is a limit to how far off my estimate was. Maybe it would take 175 
times longer, but I assure you it will not take 500 times longer, or 5000 
times longer. 

• Some people are willing to wait. So, even if it takes a month, or a year, or 
maybe a lifetime, we really need to think hard about what a long time is. 

 
• Because of these two reasons, we can not get excited about breaking 

codes just because a 5 GHz Pentium, or a 50 GHz Pentium, or even a 5000 
GHz Pentium rolls out. We can easily choose a key that is so large that 
even the fastest computers, or even cluster of computers such as a 
supercomputer, will not be able to break the code. 



Key Size 
• It is useful to represent the size of a secret 

number key by its bit size. The more bits there 
are in a key, the higher the range of numbers 
that can be represented. Look at the table to get 
an idea. 

 
• The equation is simple: 
 
 
• where K is the number of bits in the key and R is 

the highest number in the range. 
 
• Remember our 100 trillion choices from before? 

How many bits are there in that key? From the 
table we can see that the key size falls 
somewhere between 32 and 64 bits. But how 
many do we need, exactly? 



Key Size 
• Again, we have a simple formula: 
 
 
• where N is the number of key choices and K is the number of bits needed to 

represent the key. 
• Unfortunately, many people do not know how to perform a base-2 logarithm. So, 

and I am sorry to say this, from Calculus, we have an equivalent equation: 
 
 
 
• where the log is now just the base-10 log available on all calculators, and also on 

the Calculator toll in Windows. 
• So, for a key range of 100 trillion, we have: 
 

 
 
• Yep… 47 is between 32 and 64. 
 



How many Bits is Enough? 
• That is the big question. So far, by pretending, we have seen that a 47-bit 

key can be cracked in around 11 and a half days. One initial encryption 
standard used a 56-bit key. Based on our pretend assumptions, that key 
would require over 22 years to crack. 

• How long for the 64-bit key, using our same assumptions? I come up with 
an astonishing 58 centuries! Does that seek safe enough to you? It should 
be. I would be happy with 58 centuries. 

• But others are not, such as governments, large corporations, and  
terrorists. They want even stronger encryption. 1024 bits. 4096 bits. 
Staggeringly large key spaces. 

• Why? Because the 58 centuries we get for the 64 bit key have actually 
been reduced to around 5 minutes, as researches and hackers have 
discovered techniques that analyze special packets within a encrypted 
stream and mathematically deduce the key. Magic with math. 

• So, maybe now 1024 bits or more looks a lot more attractive now. 



How many Bits is Enough? 

• Here is a list of encryption algorithms and 
some of their key sizes. 



Now, What About the Technique? 
•  The size of the key is one factor affecting the time required to crack an encryption 

code. Another factor is the algorithm used in the encryption process. Let’s look at 
some simple algorithms and see how their performance can be classified. 
 

• Here is one way to implement the Caesar Shift: 
 
• for ( p = 0; p <  N; p++) 
• { 
•  charout = alphabet[ charin[p] + shiftval ]; 
• } 
  
• where N is the length of the charin data. The important thing here is not the 

statement that finds the new charout value, but rather the fact that the for-loop 
makes N passes through the data. We say this code has O(n) execution (Order-n).  



Now, What About the Technique? 
• To appreciate what O(n) means, let’s look at another algorithm that has an 

O(n2) execution time: 
 

• for ( x = 0; x < N; x++ ) 
•  for ( y = 0; y < N; y++ ) 
•  { 
•   statements… 
•  } 
 
• In this nested loop, the inner loop (the y variable loop) makes N passes 

through the statements for every one pass through the outer loop (the x 
variable loop). Overall, the statements inside the inner loop will execute 
N*N, or N2 times. So, this type of algorithm is O(n2). Naturally, we also 
have algorithms that are O(n3), O(n4), etc. 



Now, What About the Technique? 

•  Even more complex algorithms may have 
O(2N) execution time. Look at the following table 
to see why we get worried when the algorithm is 
O(2N): 



Now, What About the Technique? 

• So why do we worry about the complexity of an 
encryption algorithm?  

• Complexity is good if we are thinking about 
someone trying to crack our code. 

• Complexity is bad if we are using the encryption 
in real time (such as in a VPN tunnel)…. We must 
not disregard the encryption / decryption 
overhead at each end of the tunnel. 



All Right Then, But What is Hashing? 

• Encryption and hashing are different things, but both provide a 
secure method of transforming information. The difference is that 
data that is encrypted may be decrypted at a later time, using the 
secret key. But when a message is hashed, it is converted into a 
different form and can not be turned back (Unhashed? Dehashed?) 
into the original message. 

•  As it turns out, this is OK and actually quite useful. First, the 
time to encrypt a message and the time to hash a message may be 
drastically different, with the hash typically taking less time. Also, 
there are times when we are not interested in recovering the 
original message. For example, when you enter a password on a 
web page, you can either encrypt the password and compare the 
result with a stored list of encrypted passwords, or you can hash 
the password and search a list of hashed passwords. Since you do 
not need to ever recover the original password, why use 
encryption? 



All Right Then, But What is Hashing? 

• As a simple example, suppose our hash algorithm takes an input 
string and adds the ASCII values of the first letter in the string, the 
middle letter, and the last letter. Then we save only the lower 6 bits 
of the sum, giving a range of 0 to 63 for the hash value. 

 
• Here are some examples: 

 



All Right Then, But What is Hashing? 

• Whoops ! Do you see that two different strings (GREEN 
and EAT) hash to the same value? This is called a 
collision. By itself a collision is not a problem, because 
we can modify the data structure where we store our 
hash values to keep stack of more than one string per 
hash value. What is disturbing about collisions is that 
you can use a different string than is intended to obtain 
the same hash value. What this means is that if your 
password is saved as a hash value, it may be possible 
for someone to use a different sequence of symbols to 
get into your account, without having to use your exact 
password. 

 



All Right Then, But What is Hashing? 

• This brings up an even more disturbing point. We 
can not predict in advance when a collision might 
occur or how often. It all depends on how well 
you construct your hash algorithm. You will 
hopefully agree in this case that only using the 
first, middle, and last symbols of the input string 
may not lead to a good hash value since we are 
ignoring other symbols in the string. So, a better 
hash algorithm would add all the ASCII values of 
the string symbols. 



All Right Then, But What is Hashing? 

• An even better hash algorithm will combine the string 
symbols in different, creative ways and result in even 
larger hash values, further reducing the number of 
collisions.  

• Two widely used hash algorithms are MD5 (Message 
Digest 5) and SHA1 (Secure Hash Algorithm 1). MD5 
creates a 128 bit hash and SHA1 creates a 160 bit hash. 
Here are the hash values from each algorithm for a 
sample data file (actually for the file containing these 
lecture notes, before adding the screen shot of the 
hash program and writing any more text: 
 



Hashing Examples 
• Short ASCII text file for testing hashing utility. Note the ‘0’ 

characters at the beginning and end. 



Hashing Examples 
• MD5 and SHA1 hash values for the sample text file: 



Hashing Examples 
• Now I just change the ‘0’ on the first line to a ‘1’. Note that 

this is a one bit change ! 



Hashing Examples 
So cool ! The MD5 and SHA1 hash values are widely different, not just a 
little different. Perhaps this is one reason why MD5 and SHA1 are accepted 
algorithms for use verifying the integrity of digital forensic evidence. 



Hashing Examples 
• Now the ‘1 on the first line is changed back to a ‘0’ and the ‘0’ on 

the last line is changed to a ‘1’. Another one bit change ! 



Hashing Examples 
• And again we see radically different MD5 and SHA1 hashes... showing 

that it matters where the data is changed inside a file in addition to 
how the data is changed. 



Malware and Hashing 
• Malware writers use hashing methods to obscure their 

code and make it harder to reverse engineer. 



Malware and Hashing 
• The hashing routine creates 32-bit hash codes based on the 

names of exported DLL functions: 



Malware and Hashing 
• Sequence of DLL calls performed during execution of malware to 

download a file from the Internet and execute it. 



Thank you ! 
 
 

James L. Antonakos 
james@whitehatforensics.com 

(607) 765-2686 
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