Encryption, Hashing, and
Complexity:
Oh My |

WhiteHat & Forensics

Overview

e Encryption, hashing, and complexity are important
topics related to information security.

 Encryption is used to provide confidentiality to
information (hashing is able to do this to some
extent as well).

 Hashing is used to help verify the integrity of
information (has it changed?).

e Complexity is associated with the ease or difficulty of
cracking an encryption code.

WhiteHat & Forensics -

Topics

 Encryption Techniques

e The Caesar Shift

* Transposition Encryption

e Using a Keyword with Substitution Encryption
e A Slight Problem Here

 So Make it Harder

e But Time is Relative

WhiteHat & Forensics

Topics

e A While?

e Key Size

e How many Bits is Enough?

e Now, what about the Technique?

e All right then, but what is Hashing?
e Hashing Examples

e Malware and Hashing

WhiteHat & Forensics

Encryption Techniques

* The foundation of all secure data transmission is
an encryption technique. There are many
techniques, some better suited for one type of
data, others for other types of data.

e Butisn’t data just data? No. There is data that
represents text, data that represents numbers,
data that represents code, etc, and each have
characteristics that can be exploited both for
compression and encryption.

e Let us take a short tour of several different basic
techniques.

WhiteHat & Forensics

Encryption Techniques

substitution Transposition Private

Public Key

WhiteHat & Forensics

Encryption Techniques

Block

plaintext 1 plaintext 2 plaintext 3 ciphertext 1 — ciphertext 2~ ciphertext 3
1 I 1 ¥ ¥ L]
v - XOR X0OR XOR Decryplion Decryption Decryption
Encryption Encryption Encryption v - XOR XOR X0OR
¥ F 1 T ¥]
clphertext 1 — ciphertext 2— cipherfext 3 'ilbpialntexl 1 plaintext 2 plaintext 3
11011 Key Stream
Plain Text
tHoH 1 H 1 o H1H 1 Ho -

Cipher Text

WhiteHat & Forensics

The Caesar Shift

e This simple encryption technique shifts the alphabet a
certain number of letters one way or the other, with
wraparound at each end. Here is an example of a
Caesar shift using 5 letters of shift:

e ABCDEFGHIUKLMNOPQRSTUVWXYZ
* FGHIUKLMNOPQRSTUVWXYZABCDE

e So, an A becomes an F, an E becomes a J, etc, by
locating the letter to be encrypted on the first row and
writing down the shifted letter from the second row.

The Caesar Shift

e ZSIJWXYFSI ?

e To decode, look up each letter of the encrypted message in
the second row and write down the decrypted letter from the
first row.

e UNDERSTAND ?

e Even though this is a simple technique, it is useful and easy to
implement in software. It is also easy to share the ‘key’ for the
technique... you just need to know how many letters to shift.

WhiteHat & Forensics

Substitution Encryption

e |n substitution encryption you just replace each
original character with one from its position
within the encryption alphabet.

* ABCDEFGHIJKLMNOPQRSTUVWXYZ
e QPWOEIRUTYALSKDJFHGZMXNCBYV

 The difficulty here is the entire encryption
alphabet must be shared with the receiver.

WhiteHat & Forensics

Transposition Encryption

* This technique does not use a encryption alphabet to transform the
letters, but instead rearranges the letters of the message in a
specific order, while at the same time making the message
unreadable.

e Consider this sample message:
e JOHN LIKES TO EAT HIS MILK AND BREAD

 To help keep track of the blanks between words | am putting in
periods. It is not necessary, but will help visualize what is going on.

* JOHN.LIKES.TO.EAT.HIS.MILK.AND.BREAD

WhiteHat & Forensics

Transposition Encryption

* Now we write the letters of the message down in a two-dimensional array (also called a matrix) of
letters as shown here, with 6 letters (or periods) on each row of the array.

* JOHN.L
e IKES.T
e O.EAL
e HIS.MI
e LK.AND
e .BREAD

e The 36 letters (and periods) in the message fill the 6 by 6 matrix of letters exactly. It is a simple
matter to add extra blanks (or periods) at the end of the message if the original message is not long
enough to fill the matrix.

. Now here comes the transposition part of the technique. We wrote the letters into the
matrix one row at a time but we read the letters out one column at a time, as in:

* JIOHL.OK.IKBHEES.RNSA.AE.TMNALT.IDD

WhiteHat & Forensics

Transposition Encryption

* Now, replacing the periods with blank spaces again gives us the
encrypted message:

e JIOHL OK IKBHEES RNSA AE TMNALT IDD

e Compare the original message with its transposition encrypted
counterpart:

 JOHN LIKES TO EAT HIS MILK AND BREAD
 JIOHL OK IKBHEES RNSA AE TMNALT IDD

e As with the other techniques, this method is easy and fast to
implement.

WhiteHat & Forensics

Using a Keyword with Substitution Encryption

* To make the sharing of the key easier, you can use a keyword. The keyword must
contain all unigue letters, no repeats allowed. Here are some sample keywords,
and their resulting second rows. Do you see how the second rows are filled in?

* ABCDEFGHIUKLMNOPQRSTUVWXYZ
e SUPERBOWLACDFGHUUKMNQTVXYZ

* ABCDEFGHIUKLMNOPQRSTUVWXYZ
e TRICKYABDEFGHILMNOPQSUVWXZ

* ABCDEFGHHUKLMNOPQRSTUVWXYZ
e ZENITHABCDFGJKLMOPQRSUVWXY

e When writing the second row of letters after the keyword, fill in the remaining
letters in order. Now you just need to share the keyword to know how to decode
the message.

WhiteHat & Forensics

A Slight Problem Here

e Unfortunately, all three of the techniques presented
have a limitation: they are easy to crack.

e You can make cracking a message more difficult by
using two or more techniques, but the final result
will still be crackable within a short period of time.

Technigue How to Crack
Caesar Shift Trv all possible shift values from 1 to 25 until it works.
Substitution Use known rules and pattems. For example, E and I are the most frequent

letters, so a letter frequencv analvsis would be a good start. Plus QQ is tvpically
followed by U, there are know doubles such as LL and OO and EE, etc.
Transposition Write the message as a matrix one row at a time and read it out one column at
a time.

WhiteHat & Forensics

So Make It Harder

e Add some bit shifting and the Exclusive-OR operation into the
mix and now you’'ve made it more difficult to find patterns.

_ : i
[Key) Left shift Left shift
v
| | i
Permuted Cholce c D,
1, = i (.[J—"‘ Permuted
———
. .) | Choice 2
| | i i
1 1 !
Left shift Left shift ! ! e
Fits e Left shift Left shift
i L i
| | L §
C D
1 ':15 I::'16
L}}—' Permuted -
fl‘ | » (Choice 2 Ko | Permuted | _ .
-r l o Choice 2

Generating different DES key schedules

WhiteHat & Forensics i

So Make It Harder

e Add the Exclusive-OR operation into the nix and now you’ve
made it more difficult to find patterns.

[Input Message (&4 bits) J

4

| Initial Permutation

i | |

l 1 | Lis=R4 | | Ris=L1a@fRq4,K14) |
| Ly | | Ry | l I] Kis
| [+) {1 S
K L L e
l i : |
(;w' - K¥\' = J
= e T | RByg=Lis(®BfR15,Kis) | L1g=Ras |
' ' kA
| Ly=Rg | | Ri=Lo(Bf(Ro. Ko | Final Permutation |
I
K
] I * 1 *
™ () 'S [E utput Meszage (64 bl:s]]
L L b
B T - Block diagram of DES encryption process
T T
| Ly=R, | | Ra=L1@f(Ry.Ky) |

: : ,

WhiteHat-é oresics i

* seqBBa:
seqdga:
ceqiBn:
seqOBn:
seqgfBf:
seqdga:
ceqgiBn:
ceqiBn:
seqgBg:
seqdga:
seqgdda:
ceqiBn:
ceqgOdg:
seqgfBf:
seqdga:
ceqiBn:
seqdan:
seqgfBf:
seqdga:

(L LsRELsRiTsl
ge@aaaeac

faaaasad ;

BaBaanap
gepBane12
Bagaaa13
BaBaae16
Baaaaa19
gepBeee1A
gagaaa1D
Bagaae1F
[E1ERETE I TE e
gepaae2p
B808a6e2E
[sTiRilslslivd o
Baeaaa31
BaBaaa33
geaBaa38
Baaaaa3D

So Make It Harder

* A malware writer used a short XOR decrypting loop at the beginning of the
code. The call $+5 instruction pushes a return address onto to the stack, but
this address is the address of the next instruction pop ecx. So, these two
instructions together give the program a way to determine the Instruction
Pointer, no matter where in memory the code is loaded and executed. How
clever of the malware writer to do this and to encrypt the payload!

eCx
ecx, BCh

byte ptr [ecx], 44h =EE—————
BCx

byte ptr [ecx], ; !

short near ptr [EEEEEEDEH

dword ptr ds:343762BBh A
byte pty ds:BFACYO47hH, ; ‘DY
esp

esp

83h ; reseruvugd for BASIC
al, ;o
ecx, BAC13EBS6h Note however that this address is incorrect and

:gi! 11'!‘1_‘1”.'!:1.‘“ will be OFFFFFFF7h when the XOR takes place.

WhiteHat & Forensics

So Make It Harder

* Note that this technigue of encrypting payload codes is one of the
techniques used to hide the payload code. Another technique is to
rotate the bits in each byte 1, 2, or more places as well. Now,
suppose you suspect that the encrypted code contains a URL string
somewhere that begins with the characters http. A nice tool called
XORsearch will take an input file (the encrypted code in our case)
and an input string to search for when trying every combination of
XOR values from O to FF and every rotation pattern. Here is what

XORsearch finds:

= E)

BN C\Windows\system32\cmd.exe

C:sbloodhound*>xorsearch hexfile.bin http
Found X0R 44 position B198: http:- 77?2.92.133.75/pNuvhRL.exe?new=3&u=Ff_3_108&cc ="

C:“bhloodhound>

WhiteHat& Forensics

But Time is Relative

e |tsureis.So, what do | mean by “within a short period of time.”
Well, a few seconds is short, so is one minute, a few hours, or even
several days or weeks. Why? All may not be short depending on
what is being protected by encryption. For a newspaper scramble
puzzle, some people may crack it in a few minutes, others in a few
hours, while a few may chip away at it for days or weeks before
breaking the code.

e But if the data we have encrypted represents an electronic banking
transaction, we may not want that message to be cracked for a very
long time. But what is a long time? 100 years? 10,000 years? One
billion years?

e Ah, we see the difficulties of talking about short or long periods of
time. But if it were my own personal encrypted information, | feel
that keeping someone waiting for a billion years would be strong
enough encryption for me.

WhiteHat & Forensics

But Time is Relative

* So, let’s look at an example of how we can improve the strength of our encryption method.
Consider the following group of numbers, which represents the “message” we want to encrypt:

e 100 23 214 86

* Now, | am going to pick a number from 1 to 16. | am not going to tell you the number. Then | am
going to divide each number in the message by my secret number and keep track of the quotient
and remainder:

o 7 2 1 9 15 4 6 2
e Now a switcheroo:
o 2 7 9 1 4 15 2 6

e and back to just four numbers, using my secret number as a multiplier now, to get the encrypted
data:

e 35 127 71 34

WhiteHat & Forensics

But Time is Relative

e Once again, let’s compare the original data with the encrypted data:

e 100 23 214 86
e 35 127 71 34

e Isit possible to see any kind of pattern between the two groups of numbers? Any clue as to my
secret number? Hopefully not... but you would agree | think that since my secret number is
between 1 and 16 you could try every value until one of them works.

e | will save you the trouble, my secret number is 14. To see how | use 14 to turn 100 into 35, watch
this:

e 100 divided by 14 equals 7 with a remainder of 2. Check: 7 times 14 equals 98. 98 plus 2 equals
100.

e 0Ok, now | swapped the 7and 2 to get 2 and 7.

e Then | multiplied 2 by 14 to get 28 and added 7 to get 35.

WhiteHat & Forensics

But Time is Relative

Well, you might say, this technique is easy to crack too. Just try all the
numbers.

e But remember this: Even though | did not tell you my secret number in the
beginning, | told you | was dividing the numbers in the original message
and also switching their quotient and remainders. So, you knew part of
the technique, which helps you while you are attempting to crack it. If |
can keep the secret number and the technique secret as well, that is even
better because then you will be hard pressed to see a pattern.

 For now, let’s concentrate on the secret number. A range of 1 to 16 is not a
very big range and you will have no trouble cracking the code in a
relatively short period of time. So, we need to increase the range. How
about 1 to 100 trillion? That is much bigger. Think about the poor person
who has to try to crack that numeric code, even knowing the
multiply/divide switcheroo method? Which number out of 100 trillion
choices is the secret number? That will keep the person, or even a
computer, busy for a while.

WhiteHat & Forensics

A While?

e Ok, what do | mean by “a while?”

e Computers are very fast, but humans are slow. We do not like to think about things
like nanoseconds. Hard to appreciate. But tell us a message takes 5 seconds to
crack, and we understand that. Or telling us that a message will take 250 million
centuries to crack is also something we can appreciate. Which message is
uncrackable? | think you get the idea.

. So, let’s consider a personal computer available today. Maybe you have a
dual-core Pentium at 4 GHz (Giga Hertz, 4 billion clock cycles each second). That
means its clock period, the time of one clock cycle, is 4 billionths of a second, or
0.25 nanoseconds.

. Now, the Pentium will require from 1 to 4 or more clock cycles to execute an
instruction. Let us pretend it takes 2.5 clock cycles, on average, to execute an
instruction. And, let us further assume that it takes 16 instructions to perform a
decryption on one symbol, if we have the correct secret key. This means we can
decrypt one symbol in 10 nanoseconds. That seems a reasonable amount of time
and is probably much shorter than what would actually be required, so we are
looking at a best-case scenario here.

WhiteHat & Forensics

A While?

* Now, let us further assume that after 10 nanoseconds and we have
decoded one symbol that we can look at that symbol and tell if it is
correct. If it is not correct, then we have to choose a new key and try
decrypting the same symbol again. In effect, we can now decrypt and
check one symbol in 10 nanoseconds. We really can’t do this, but we are
pretending.

e So, if we can decrypt and check one symbol in 10 nanoseconds, we can
check 100 million keys in one second. Each key we try fails and we move
on to the next key. Remember, we really can not check 100 million keys in
one second with our 4 GHz Pentium because we are pretending.

e Ok, | mentioned 100 trillion choices before. Let’s look at that number. 100
trillion keys divided by the ability to check 100 million keys in one second
gives 1 million seconds, which works out to 11 days, 13 hours, 46 minutes,
and 40 seconds. | said that 100 trillion choices (keys) would keep the
person or computer busy “for a while.” Do you agree that over 11 and a
half days is “a while?”

WhiteHat & Forensics

A While?

e Would you also agree that, since we have been pretending, that it will
actually take longer than 11 and a half days to crack the code? How much
longer does not matter, even if it is 10 times longer or 100 times longer,
because two things are true:

e There is a limit to how far off my estimate was. Maybe it would take 175
times longer, but | assure you it will not take 500 times longer, or 5000
times longer.

e Some people are willing to wait. So, even if it takes a month, or a year, or
maybe a lifetime, we really need to think hard about what a long time is.

e Because of these two reasons, we can not get excited about breaking
codes just because a 5 GHz Pentium, or a 50 GHz Pentium, or even a 5000
GHz Pentium rolls out. We can easily choose a key that is so large that
even the fastest computers, or even cluster of computers such as a
supercomputer, will not be able to break the code.

WhiteHat & Forensics

Key Size

e |tis useful to represent the size of a secret
number key by its bit size. The more bits there
are in a key, the higher the range of numbers
that can be represented. Look at the table to get
an idea.

e The equation is simple:

R=2% -1

e where K is the number of bits in the key and R is
the highest number in the range.

e Remember our 100 trillion choices from before?
How many bits are there in that key? From the
table we can see that the key size falls
somewhere between 32 and 64 bits. But how
many do we need, exactly?

WhiteHat & Forensics

Number of | Range of Numbers in Key Space
Bits in Kev

4 lto 13

10 110 1,023

16 1to 63,335

20 1to 1,048,575

24 1to 16777215

32 1to 4,294 967205

64 1to 18 446, 744,073,709 551,615

Key Size

e Again, we have a simple formula:

K =log, N

* where N is the number of key choices and K is the number of bits needed to
represent the key.

e Unfortunately, many people do not know how to perform a base-2 logarithm. So,
and | am sorry to say this, from Calculus, we have an equivalent equation:

_logN
log2

K

 where the log is now just the base-10 log available on all calculators, and also on
the Calculator toll in Windows.

e So, for a key range of 100 trillion, we have:

~ 10og100,000,000,000,000 14
log 2 0.301

Yep... 47 is between 32 and 64.

K =46.51=47bits

WhiteHat & Forensics

How many Bits is Enough?

e That is the big question. So far, by pretending, we have seen that a 47-bit
key can be cracked in around 11 and a half days. One initial encryption
standard used a 56-bit key. Based on our pretend assumptions, that key
would require over 22 years to crack.

e How long for the 64-bit key, using our same assumptions? | come up with
an astonishing 58 centuries! Does that seek safe enough to you? It should
be. | would be happy with 58 centuries.

 But others are not, such as governments, large corporations, and
terrorists. They want even stronger encryption. 1024 bits. 4096 bits.
Staggeringly large key spaces.

e Why? Because the 58 centuries we get for the 64 bit key have actually
been reduced to around 5 minutes, as researches and hackers have
discovered techniques that analyze special packets within a encrypted
stream and mathematically deduce the key. Magic with math.

 So, maybe now 1024 bits or more looks a lot more attractive now.

WhiteHat & Forensics

How many Bits is Enough?

e Here is a list of encryption algorithms and
some of their key sizes.

Encryption Algorithms

DES Symmetric Symmetric Encryption Algorithm Key Length

symmetric

AES Symmetric DES 56 bits
Blowfish Symmetric 3DES 168 bits
RC2/4 Symmetric AES 128 - 256 bits
RC5/6 Symmetric Blowfish 1 - 448 bits
RSA Asymmetric RC2/4 1 - 2048 bits
Diffie-Hellman Asymmetric RC5/6 128 - 256 bits
ElGamal Asymmetric

Elliptic Curve Asymmetric

WhiteHat & Forensics i

Now, What About the Technique?

The size of the key is one factor affecting the time required to crack an encryption
code. Another factor is the algorithm used in the encryption process. Let’s look at
some simple algorithms and see how their performance can be classified.

e Here is one way to implement the Caesar Shift:

e for(p=0;p< N;p++)

S
. charout = alphabet[charin[p] + shiftval];
SR

e where N is the length of the charin data. The important thing here is not the
statement that finds the new charout value, but rather the fact that the for-loop
makes N passes through the data. We say this code has O(n) execution (Order-n).

WhiteHat & Forensics

Now, What About the Technique?

e To appreciate what O(n) means, let’s look at another algorithm that has an
O(n?) execution time:

e for(x=0;x<N;x++)

. for(y=0;y<N; y++)
y {
e statements...
: }

e |n this nested loop, the inner loop (the y variable loop) makes N passes
through the statements for every one pass through the outer loop (the x
variable loop). Overall, the statements inside the inner loop will execute
N*N, or N? times. So, this type of algorithm is O(n?). Naturally, we also
have algorithms that are O(n3), O(n?), etc.

WhiteHat & Forensics

Now, What About the Technique?

. Even more complex algorithms may have
O(2N) execution time. Look at the following table
to see why we get worried when the algorithm is

0(2V):
N O(m) | O(m®) O(n%) oM
1 1 1 1 2
2 2 4 g 1
5 5 25 125 32
10 10 100 1000 1024
20 20 400 8000 1048576
5 50 2500 125000 1.125x105
100 | 100 10000 1000000 1.268x10%0
1000 | 1000 | 1000000 | 1000000000 | 1.072x10301

WhiteHat & Forensics

Now, What About the Technique?

e So why do we worry about the complexity of an
encryption algorithm?

e Complexity is good if we are thinking about
someone trying to crack our code.

e Complexity is bad if we are using the encryption
in real time (such as in a VPN tunnel).... We must
not disregard the encryption / decryption
overhead at each end of the tunnel.

WhiteHat & Forensics

All Right Then, But What is Hashing?

 Encryption and hashing are different things, but both provide a
secure method of transforming information. The difference is that
data that is encrypted may be decrypted at a later time, using the
secret key. But when a message is hashed, it is converted into a
different form and can not be turned back (Unhashed? Dehashed?)
into the original message.

. As it turns out, this is OK and actually quite useful. First, the
time to encrypt a message and the time to hash a message may be
drastically different, with the hash typically taking less time. Also,
there are times when we are not interested in recovering the
original message. For example, when you enter a password on a
web page, you can either encrypt the password and compare the
result with a stored list of encrypted passwords, or you can hash
the password and search a list of hashed passwords. Since you do
not need to ever recover the original password, why use
encryption?

WhiteHat & Forensics

All Right Then, But What is Hashing?

e As asimple example, suppose our hash algorithm takes an input
string and adds the ASCII values of the first letter in the string, the
middle letter, and the last letter. Then we save only the lower 6 bits
of the sum, giving a range of 0 to 63 for the hash value.

* Here are some examples:

String First Letter Middle Last Letter Sum Hash Value
And Value Letter And Value
And Value

James T-74 m - 109 s-115 298 42
Antonakos A-65 n-110 s-115 290 34
GREEN G-71 E - 69 N-78 218 (26)
CS5T!104 C-67 I-33 4 -52 152 24

EAT E-69 A -65 T -84 218 (26)

WhiteHat & Forensics

All Right Then, But What is Hashing?

e Whoops ! Do you see that two different strings (GREEN
and EAT) hash to the same value? This is called a
collision. By itself a collision is not a problem, because
we can modify the data structure where we store our
hash values to keep stack of more than one string per
hash value. What is disturbing about collisions is that
you can use a different string than is intended to obtain
the same hash value. What this means is that if your
password is saved as a hash value, it may be possible
for someone to use a different sequence of symbols to
get into your account, without having to use your exact
password.

All Right Then, But What is Hashing?

e This brings up an even more disturbing point. We
can not predict in advance when a collision might
occur or how often. It all depends on how well
you construct your hash algorithm. You will
hopefully agree in this case that only using the
first, middle, and last symbols of the input string
may not lead to a good hash value since we are
ignoring other symbols in the string. So, a better

hash algorithm would add all the ASCII values of
the string symbols.

WhiteHat & Forensics

All Right Then, But What is Hashing?

e An even better hash algorithm will combine the string
symbols in different, creative ways and result in even
larger hash values, further reducing the number of
collisions.

e Two widely used hash algorithms are MD5 (Message
Digest 5) and SHA1 (Secure Hash Algorithm 1). MD5
creates a 128 bit hash and SHA1 creates a 160 bit hash.
Here are the hash values from each algorithm for a
sample data file (actually for the file containing these
lecture notes, before adding the screen shot of the
hash program and writing any more text:

Hashing Examples

e Short ASCII text file for testing hashing utility. Note the ‘0’

characters at the beginning and end.
| testfile.txt - Notepad |‘:' BN X

File Edit Format View Help

0, p
Whoops ! Do you see that two different strings (GREEN and EAT) hash to the same wvalue?
This is called a collisicon. By itself a collision is not a problem, because we can

modify the data structure where we store our hash wvalues to keep stack of more than one
string per hash value. What is disturbing about collisicns is that you can use a

different string than is intended to cbtain the same hash wvalue. What this means is

that if your password is saved as a hash walue, it may be possible for somecone to use a
different seguence of symbols to get into your account, without having to use your

exact password.

This brings up an even more disturbing point. We can not predict in advance when a
collision might occur or how often. It all depends on how well you construct your hash
algorithm. ¥You will hopefully agree in this case that only using the first, middle,
and last symbols of the input string may not lead to a good hash value since we are
ignoring other symbols in the string. So, a better hash algorithm would add all the
ASCII wvalues of the string symbols.

An even better hash algorithm will combine the string symbols in different, creative
ways and result in even larger hash wvalues, further reducing the number of collisions.
Two widely used hash algorithms are MDS (Message Digest 5) and SHA1 (Secure Hash
Blgorithm 1) . MdS5 creates a 128 bit hash and SHA1 creates a 160 bit hash. Here are the
hash walues from each algorithm for a sample data file (actually for the file
containing these lecture notes, before adding the screen shot of the hash program and
writing any more text:

0

WhiteHat & Forensics

Hashing Examples

e MDS5 and SHA1 hash values for the sample text file:

-

%5 MDS5 & SHA Checksum Utility 2.1 S
Help Check out Pro Version
Generate Hash
Rle- CAlzers\james\Documents\My Documents\cyversec\testfile td [Browse]
MD5 |V 556D379670F6619B78134E29B8385764E | Copy MD5 |
SHA-1 |V| 14CI93EFSFA48CI95398ABEBCF3C/F41FE6574476E | Copy SHA-1 |

SHA-256 || BBEEC3050704581D3892C2571BD71D3E329A00EFO7171DDABI7707E538269BCET |C.;.p1_,r5|-|,ﬂ.,.255|

SHA-512 [V EABSTH9D2834FA448514F4948CD69692ED3S7ET1MA21DACCT /D 72D 758E2816F4 |Cnp1.rSH..’-'-.—512 |

| CopyAl |

Venfy Hash with Generated Hash (MD5. SHA-1. SHA-256 or SHA-512)
Hash: | Paste |

| Very |

Check out the Pro Version for More Features

WhiteHat & Forensics

Hashing Examples

e Now | just change the ‘0" on the first line to a ‘1". Note that

this is a one bit change !
J testfiletxt - Notepad . | = | B I-S:L-1

- = - . Y
File Edit Format View Help
1 -
Whoops ! Do you see that two different strings (GREEN and EAT) hash to the same value?
This is called a collision. By itself a collision is not a problem, because we can
modify the data structure where we store our hash walues to keep stack of more than one
string per hash wvalus. What is disturbing about collisicons is that you can use a
different string than is intended to cobtain the same hash value. What this means is
that if your password is saved as a hash wvalue, it may be possible for somecne to use a
different sequence of symbols to get into your account, without having to use your
exact password.

This brings up an even more disturbing point. We can not predict in advance when a
collision might occur or how often. It all depends on how well you construct your hash
algorithm. You will hopefully agree in this case that only using the first, middle,
and last symbols of the input string may not lead to a good hash valus since we are
ignoring other symbols in the string. So, a better hash algorithm would add all the
ASCITI walues of the string symbols.

An even better hash algorithm will combine the string symbols in different, creative
ways and result in even larger hash wvalues, further reducing the number of collisions.
Two widely used hash algorithms are MDS (Message Digest 5) and SHAL (Secure Hash
Algorithm 1). Md5 creates a 128 bit hash and SHAR1 creates a 160 bit hash. Here are the
hash wvalues from each algorithm for a sample data file (actually for the file
containing these lecture notes, before adding the screen shot of the hash program and
writing any more text:

1]

WhiteHat & Forensics

Hashing Examples

So cool | The MD5 and SHA1 hash values are widely different, not just a
little different. Perhaps this is one reason why MD5 and SHA1 are accepted
algorithms for use verifying the integrity of digital forensic evidence.

-

=5 MD5 & SHA Checksum Utility 2.1 L |

Help Check cut Pro Version
Generate Hash

Rle: CAllzers\jJames\Documents\My Documentshcyversec\testfile txt | Browse
MD5 || A49D757/DASTD3053B27DEFS0ADSTFE3C | Copy MD5 |
SHA-1 || AIDO3ETE4AT7T9C1CB230905A84EFESBEAFADS40EDADA | Copy SHA-1 |

SHA-256 |V| E3098C39BB423CIF04219A7D6373FBEESAIZ249BDTEIAIIDEFSDFAEIDL9236C32 |I:|:||:|'!'r SHA-256 |
SHA-512 |V FFGEECAEAE2DEBY103030CFI1BFBEBBB7AA184EDCBS7B6F6ED3ATAEIBSBFS3ABAL | Copy SHA-512 |

| CopyAl |
Venfy Hash with Generated Hash (MD5. SHA-1. SHA-256 or SHA-512)
Hash: | Faste |

Check out the Pro Version for More Features

WhiteHat & Forensics

Hashing Examples

* Now the ‘1 on the first line is changed back to a ‘0’ and the ‘0’ on
the last line is changed to a ‘1’. Another one bit change !
7 testfile.bet - Notepad _ _ ==

File Edit Format View Help

0 -
Whoops ! Do you see that two different strings (GREEN and EAT) hash to the same wvalue?
This is called a collision. By itself a collision is not a problem, because we can

modify the data structure where we store our hash values to keep stack of more than cne
string per hash wvalue. What is disturbing about collisions is that you can use a

different string than is intended to cbtain the same hash value. What this means is

that if your password is saved as a hash value, it may be possible for somecne to use a
different sequence of symbols to get into your account, without having to use your

exact password.

This brings up an even more disturbing point. We can not predict in advance when a
collision might occur or how often. It all depends on how well you construct your hash
algorithm. You will hopefully agree in this case that only using the first, middle,
and last symbols of the input string may not lead to a good hash value since we are
ignoring other symbols in the string. So, a better hash algorithm would add all the
BASCII wvalues of the string symbols.

En even better hash algorithm will combine the string symbols in different, creative
ways and result in even larger hash walues, further reducing the number of collisions.
Two widely used hash algorithms are MDS (Message Digest 5) and SHA1 (Secure Hash
Blgorithm 1). Md5 creates a 128 bit hash and SHAL creates a 160 bit hash. Here are the
hash walues from sach algorithm for a sample data file (actually for the file
containing these lecture notes, before adding the screen shot of the hash program and
writing any more text:

1

WhiteHat & Forensics

Hashing Examples

* And again we see radically different MD5 and SHA1 hashes... showing
that it matters where the data is changed inside a file in addition to
how the data is changed.

-

"5 MDS5 & SHA Checksum Utility 2.1 L= | = e

Help Check out Pro Version

Generate Hash
Fle: C-\Users\james\Documents\My Documents\cyversec\testfile txt
MD5 [7] CC11ASCDOF11150CEBODA538D3895939 [CopymD5 |
SHA-1 [/] B700A77A4C67861AB061EFBIB1DAEADASC016457 [Copy SHA1 |
SHA-256 (V| B3592C1DBB3C5D3B6821D21AED4ESF021792BD3CEBSFDFBAECBCDCA254CBBFDL | Copy SHA-256 |
SHA512 [V| 631C79B4388418E445B01F1BO3FE489DC0006FI1ACEB28A56412E2E9727CD10CD | Copy SHA512 |
[CopyAl |

Venfy Hash with Generated Hash (MD5. SHA-1. SHA-256 or SHA-512)

Hash: |?l

| Vedfy |

Check out the Pro Version for More Features

WhiteHat & Forensics

Malware and Hashing

e Malware writers use hashing methods to obscure their
code and make it harder to reverse engineer.

sub_11C proc near ; CODE WSREF: sub_137+20CLp
arg_#8a = dword ptr 8
push ebp
nov ebp, esp
mov eax, [ebp+arg 8] ; retrieve memory pointer from stack frame
push edx
®or edx, edx ; EDX = f0000060
loc 125: ;: CODE XREF: sub 11C+12]Lj
rol edx, 3 ; rotate EDX 3 bits left
®or dl, [eax] : hash char code from function name
inc eax : advance to next char in function name
cmp byte ptr [eax], 8 ; B means end of function name string
jnz short loc 125 ; do more characters if not @
now eax, edx : return hash value in EAX
pop edx
leave
retn i
sub_11C endp

WhiteHat & Forensics

Malware and Hashing

e The hashing routine creates 32-bit hash codes based on the
names of exported DLL functions:

I kernel32-hash.txt - Notepad
File Edit Farmak Yiew Help

MapUserrhysicalPagesscatter] --» OBBCCFFS -
MapviewdfTFile] --» D45D7145

MapviewdTFileEx] --> 175C5025

Module32First] —--» CB7LASYE

Module3ZFirstw] —--> 438D4EB51

ModulesdzMext] —--»> QQO0EZGT7E

Module3dZNextw] —--> CB7L33E3

MoveFiles] —-> THEISEFNEE

MoveFileExa] —--> 43849801

MoveFileExw | —--> 438BA98CT

MoveFilew] —--> 410EZATF

MowveFilewithProgressa] —-» OF2AD221
MoverilewithProgressw] —--> OFZ2ADZ37

MulDiv] —--3> 0Q0Z211A3E

MultiByteTowideChar] --» S4FBCDLS
MlzsConvertIntegerTostring] —-»> 23C7EBAC
MlsGetCachelpdateCount] —--»> SD53A3EG
MlsResetProcessLocale] —-» 94BEERED
Mumavirtualqueryhode] --> FC484E34

openZonsolew] --»> 4FECF6GFE w

NN | s | | e | s | e | e | | e | e | e | e | s | e | s [y |

WhiteHat & Forensics

Malware and Hashing

e Sequence of DLL calls performed during execution of malware to
download a file from the Internet and execute it.

Hash Value DLL Function DLL
A412FDBS LoadLibraryA KERNEL32 DLL
E4ECZ1el URLDownloadToCacheFileA | URLMONDLL
2DeD01%S LocalAlloe KERNEL32 DLL
C3FFZF46 VirtualProtect KERNEL32.DLL
410E2R65 MoveFileA KERNEL32 DLL
1cEEFT4B WinExec KERNEL32 DLL
D6196BEL RilExitUserThread NTDLL.DLL

WhiteHat & Forensics

Thank you !

James L. Antonakos
james@whitehatforensics.com
(607) 765-2686

WhiteHat & Forensics

	Encryption, Hashing, and Complexity:�Oh My !
	Overview
	Topics
	Topics
	Encryption Techniques
	Encryption Techniques
	Encryption Techniques
	The Caesar Shift
	The Caesar Shift
	Substitution Encryption
	Transposition Encryption
	Transposition Encryption
	Transposition Encryption
	Using a Keyword with Substitution Encryption
	A Slight Problem Here
	So Make It Harder
	So Make It Harder
	So Make It Harder
	So Make It Harder
	But Time is Relative
	But Time is Relative
	But Time is Relative
	But Time is Relative
	A While?
	A While?
	A While?
	Key Size
	Key Size
	How many Bits is Enough?
	How many Bits is Enough?
	Now, What About the Technique?
	Now, What About the Technique?
	Now, What About the Technique?
	Now, What About the Technique?
	All Right Then, But What is Hashing?
	All Right Then, But What is Hashing?
	All Right Then, But What is Hashing?
	All Right Then, But What is Hashing?
	All Right Then, But What is Hashing?
	Hashing Examples
	Hashing Examples
	Hashing Examples
	Hashing Examples
	Hashing Examples
	Hashing Examples
	Malware and Hashing
	Malware and Hashing
	Malware and Hashing
	Slide Number 49

