
Section III:3 System Design 71
NYS Project Management Guidebook

3 SYSTEM DESIGN

Purpose

The purpose of System Design is to create a technical solution
that satisfies the functional requirements for the system. At this
point in the project lifecycle there should be a Functional
Specification, written primarily in business terminology, con-
taining a complete description of the operational needs of the
various organizational entities that will use the new system. The
challenge is to translate all of this information into Technical
Specifications that accurately describe the design of the system,
and that can be used as input to System Construction.

The Functional Specification produced during System Require-
ments Analysis is transformed into a physical architecture.
System components are distributed across the physical archi-
tecture, usable interfaces are designed and prototyped, and
Technical Specifications are created for the Application
Developers, enabling them to build and test the system.

Many organizations look at System Design primarily as the
preparation of the system component specifications; however,
constructing the various system components is only one of a set
of major steps in successfully building a system. The prepara-
tion of the environment needed to build the system, the testing
of the system, and the migration and preparation of the data
that will ultimately be used by the system are equally impor-
tant. In addition to designing the technical solution, System
Design is the time to initiate focused planning efforts for both
the testing and data preparation activities.

List of Processes

This phase consists of the following processes:

� Prepare for System Design, where the existing project
repositories are expanded to accommodate the design work
products, the technical environment and tools needed to
support System Design are established, and training needs
of the team members involved in System Design are
addressed.

� Define Technical Architecture, where the foundation and
structure of the system are identified in terms of system
hardware, system software, and supporting tools, and the
strategy is developed for distribution of the various system
components across the architecture.

� Define System Standards, where common processes,
techniques, tools, and conventions that will be used
throughout the project are identified in an attempt to
maximize efficiencies and introduce uniformity throughout
the system.

� Create Physical Database, where the actual database to
be used by the system is defined, validated, and optimized
to ensure the completeness, accuracy, and reliability of the
data.

� Prototype System Components, where various compo-
nents of the solution may be developed or demonstrated
in an attempt to validate preliminary functionality, to
better illustrate and confirm the proposed solution, or to
demonstrate “proof-of-concept.”

� Produce Technical Specifications, where the operational
requirements of the system are translated into a series of
technical design specifications for all components of the
system, setting the stage for System Construction.

The following chart illustrates all of the processes and deliver-
ables of this phase in the context of the system development
lifecycle.

72 Section III:3 System Design

NYS Project Management Guidebook

Section III:3 System Design 73
NYS Project Management Guidebook

Figure 3-1

Validated Business
Requirements
and Models

Functional Specification

System Requirements Analysis

Prepare for
System

Requirements
Analysis

Determine
Business

Requirements

Define
Process Model

Define
Logical Data

Model

Reconcile
Business

Requirements
with Models

Produce
Functional

Specification

Prepare for
System Design

Define
Technical

Architecture

Define
System

Standards

Create
Physical
Database

Prototype
System

Components

Produce
Technical

Specifications

Prepare for
System

Construction

Refine
System

Standards

Build, Test
and

Validate
(BTV)

Conduct
Integration and
System Testing

Produce
User and
Training

Materials

Produce
Technical

Documentation

System Design System Construction

Logical Data Model

Process Model

Business
Requirements

Technical
Architecture

System
Standards

Database
and System
Files

Technical
Specifications

System
Prototype

74 Section III:3 System Design

NYS Project Management Guidebook

List of Roles

The following roles are involved in carrying out the processes
of this phase. Detailed descriptions of these roles can be found
in the Introductions to Sections I and III.

� Project Manager

� Project Sponsor

� Facilitator

� Business Analyst

� Data/Process Modeler

� Technical Lead/Architect

� Application Developers

� Software Quality Assurance (SQA) Analyst

� Technical Services (HW/SW, LAN/WAN, TelCom)

� Information Security Officer (ISO)

� Technical Support (Help Desk, Documentation, Trainers)

� Customer Decision-Maker

� Customer Representative

� Performing Organization Management

� Stakeholders

Section III:3 System Design 75
NYS Project Management Guidebook

Figure 3-2

Processes Techniques Process Deliverables
(Outcomes)

Prepare for System Interviews Established Team and
Design Site Walk-throughs Environment for System

Design

Define Technical Interviews Technical Architecture
Architecture Document Gathering and Reviews

Role/Authorization Analysis

Define System Interviews System Standards
Standards Brainstorming

Policy and Standards Reviews

Create Physical Formal Walk-throughs Databases and System Files
Database Standard Data Definition

Languages
Data Administration Techniques

(Data Normalization,
De-Normalization)

Prototype System Iterative Prototypes/Reviews Prototype and Proof of
Components Presentations Concept Results

GUI/Report Development Tools

Produce Technical Function Decomposition Technical Specifications
Specifications Expressing Logic: Pseudo Code,

Structured English, Object
Oriented Logic

Operational Requirements
Assessment

System Load Analysis
Business Impact Analysis
Potential Problem Analysis
Training Needs Decomposition

List of Deliverables

The following table lists all System Design processes, some
techniques available for use in executing these processes, and
process outcomes and deliverables.

76 Section III:3 System Design

NYS Project Management Guidebook

3.1 PREPARE FOR SYSTEM DESIGN

Purpose

Prepare for System Design formally marks the beginning of
System Design and facilitates the transition from System
Requirements Analysis. The purpose of this process is consis-
tent with every “prepare for phase” process identified within
the system development lifecycle - to assess whether the
Project Team members, and the environment in which they will
work, are ready for successful completion of this phase.

Description

The skills needed by the Project Team to perform System
Requirements Analysis processes are dramatically different
from those required to translate the requirements into a tech-
nical design. While it is certainly possible for the
current team to possess the range of skills required for both

phases, this assessment needs to be per-
formed and the team profile adjusted to
match the needs of System Design.

Often, there is a distinct advantage to
keeping as much of the original Project
Team as possible while progressing from
each phase to the next, thereby retaining
business knowledge and functional
expertise gained in prior phases. It is,
however, also common for the team size
to expand as the project advances into
the Design phase.

The initiation of a new project phase is
also the right time to assess the training
needs of the existing team. Please refer
to Section I, Project Planning, for a
detailed approach to developing your
Project Team.

It is the Project Manager’s responsibility to ensure that team
members have adequate equipment to perform their duties,
that this equipment is configured with the proper design tools,

Roles

� Project Manager

� Project Sponsor

� Business Analyst

� Facilitator

� Data/Process Modeler

� Technical Lead/Architect

� SQA Analyst

� Technical Services

� Information Security Officer

� Technical Support

� Customer Decision-Maker

� Customer Representative

� Performing Organization

� Stakeholders

Section III:3 System Design 77
NYS Project Management Guidebook

and that the team has access to the data repository that will be
used throughout design efforts. A key activity will be the defi-
nition of the mechanisms and processes to be followed for cre-
ating and maintaining all System Design related materials, sim-
ilar to the repository that was utilized for all System
Requirements work products and deliverables.

This is also the time to begin to establish the environment that
will likely be required when the Project Team initiates the pro-
totyping activities.

During this phase, the Project Team’s focus moves from busi-
ness and functional areas to technical issues. As a result, there
is often less involvement on the part of those project partici-
pants more closely aligned with the organization’s functional
and operational needs (the Stakeholders, Customer, Consumer,
and Project Sponsor). These parties may begin to feel isolated
or removed from the project due to their reduced involvement
and they may not be immediately aware of much of the progress
of the Project Team. While they are likely to play an active role
in the discussions surrounding test planning and data conver-
sion, they usually have limited involvement in the identification
of the technical architecture and standards and the development
of Technical Specifications. This situation poses a challenge for
the Project Manager, since these individuals will ultimately be
profoundly affected by all of these activities. The Project
Manager must maintain effective communications with these
individuals throughout this phase to ensure that they understand
the implications of the technical decisions being made.

Business area experts, such as Customer Representatives, typically have much less

involvement in System Design than in the System Requirements Analysis phase. Those

areas of System Design in which they are most often involved include:

� Reviewing iterations of the prototype and user interface design.

� Defining detailed business-related algorithms that were not specified during System

Requirements Analysis.

� Approving plans for converting from old system(s) to the new one.

� Validating user security schemes and authorizations.

Periodic design reviews conducted at key points during System Design often provide a way to

batch user comments so that they are most useful to the software designers.

While System Design activities often reduce the demand for
involvement of those participants aligned with the functional
side of the organization, there is usually an opportunity for
increased participation by the technical Project Team mem-
bers. These team members, (often associated with Technical
Services, Technical Support, ISO, and SQA), have a definite
vested interest in many decisions being made and directions
being set. As a result, they need to understand the extent to
which the design aligns with their existing infrastructure, stan-
dards, and processes. In addition, it may be these team mem-
bers who ultimately inherit, and therefore must provide long-
term support for, the final system. The earlier the Project
Manager can incorporate these sectors of the organization into
the Project Team and make them a part of the solution, the bet-
ter. The more active their involvement during System Design,
the greater their buy-in to the system, and the greater their
sense of ownership throughout the project.

3.2 DEFINE TECHNICAL ARCHITECTURE

Purpose

The purpose of Define Technical Architecture is to describe
the overall technical solution in terms of the hardware plat-
form, programming development languages, and supporting
toolsets to be used in the creation and maintenance of the new
system. The goal of this effort is to design a technical solution
and architecture to accommodate both the initial and expected
long-term requirements of the Performing Organization.

Description

The Project Team needs to understand the processing and data
management capabilities, and the respective long-term strate-
gic technical directions, of the organization that will ultimately
support this application. This understanding will enable the
team to determine the best approach to distributing or centraliz-
ing the data and processing capabilities of the system.

To define the technical architecture of the new system, the
Project Team must perform a thorough assessment of the orga-

78 Section III:3 System Design

NYS Project Management Guidebook

nization’s existing infrastructure, stan-
dards, and information capabilities.
Assuming that the technical platforms
already in place can adequately support
the new system, a design that leverages
these existing platforms results in clear
advantages in terms of increased produc-
tivity, decreased costs, and reduced learn-
ing curves. It is not uncommon, however,
for new systems to impose technical solu-
tions that require the extension or expan-
sion of an organization’s current architec-
ture standards. Prime examples of this
are organizations seeking to establish an
Internet and Intranet presence with 24x7
accessibility, potentially introducing the
necessity for new system support, securi-
ty, disaster recovery, and maintenance
strategies.

Issues that need to be addressed during this process include:

� Determination of the hardware and system platforms
(mainframe, client/server, etc.) needed to accommodate
the various Development, QA, and Acceptance environ-
ments.

� Definition of a strategy for distributing the system across
the architecture (data storage and access, business logic,
and user presentation layers).

� Identification of runtime and batch processing require-
ments, and definition of a supporting strategy.

� Assessment of reporting, archiving, and audit require-
ments, along with a supporting architecture.

� Determination of system interfaces and the accommodation
of the supporting data.

It is during the System Design phase that the significance of the
Technical Lead/Architect role increases, with responsibility to:

� establish and communicate the overall technical direction,

� ensure that design decisions made during this phase
effectively support the functional requirements while
leveraging existing infrastructure and standards,

� justify and defend design decisions that deviate from the
existing environments,

Section III:3 System Design 79
NYS Project Management Guidebook

Roles

� Project Manager

� Project Sponsor

� Business Analyst

� Facilitator

� Data/Process Modeler

� Technical Lead/Architect

� SQA Analyst

� Technical Services

� Information Security Officer

� Technical Support

� Customer Decision-Maker

� Customer Representative

� Performing Organization

� Stakeholders

80 Section III:3 System Design

NYS Project Management Guidebook

� establish standards by which all Technical Specifications
will be produced, and

� communicate with all technical support organizations (both
internal as well as statewide entities).

Deliverable

� Technical Architecture – A document describing the
overall system architecture in terms of hardware, software,
tools, and peripherals, and the logical distribution of
system components and processes across this architecture.

Obviously, the Technical Lead/Architect is crucial throughout this process. Keys to the

Technical Lead’s success are familiarity and background with multiple technologies, and

the ability to assess pros and cons of these technologies as they apply to the system at hand.

As Project Manager, you need to ensure that the Technical Lead has access to additional expert-

ise and resources, if needed.

Figure 3-3 Technical Architecture Template

Section III:3 System Design 81
NYS Project Management Guidebook

< Name of Agency >

Technical Architecture
< System Name >

Agency

Project Name

Project Sponsor

Project Manager

Document Date

Prepared By

Enter the name of the Agency for which the system is being developed.
Enter the Project Name, and the names of the Project Manager and the Project Sponsor.
Enter the Date as of which this document is current.
Enter the names of the Project Team members by whom the document was Prepared.

82 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-3 (Continued)

Technical Architecture

TABLE OF CONTENTS

The Table of Contents should be at least two levels deep.

1.0 DOCUMENT SCOPE

Document Scope describes the context and the goals of this document in a narrative.

Example:
This document describes the Technical Architecture of the <XYZ> System that satisfies
business requirements as documented in the Business Requirements Document, <Date>,
and implements the functionality and satisfies technical, operational and transitional require-
ments described in the Functional Specification, <Date>.

The goal of this Technical Architecture is to define the technologies, products, and tech-
niques necessary to develop and support the system, and to ensure that the system com-
ponents are compatible and comply with the enterprise-wide standards and direction
defined by the Agency.

This document will also:
� Identify and explain the risks inherent in this Technical Architecture;
� Define baseline sizing, archiving and performance requirements;
� Identify the hardware and software specifications for the Development, Testing, QA

and Production environments;
� Define procedures for both data and code migration among the environments.

The Document Scope narrative also provides an overview of the efforts conducted to under-
stand the existing technical environment and IT strategic direction and to determine how the
system’s proposed technical architecture fits into them.

Section III:3 System Design 83
NYS Project Management Guidebook

Figure 3-3 (Continued)

Technical Architecture

2.0 OVERALL TECHNICAL ARCHITECTURE

2.1 System Architecture Context Diagram

The System Architecture Context Diagram provides the “big picture” view of the system’s
architecture, and puts it in context with the rest of the Performing Organization’s systems
portfolio, illustrating how the system’s hardware and software platforms fit into the existing
environment.

2.2 System Architecture Model

The System Architecture Model represents the various architecture components that
comprise the system, and shows their interrelationships.

2.2.1 Overall Architectural Considerations

The Overall Architectural Considerations section defines how additional technical requirements
have been addressed by the architecture. Representative items in this section may include:

� Security Strategy � Data import and export
� Performance requirements � Data encryption and decryption
� Accessibility � Disaster recovery
� Database sizing � Audit tracking
� Transaction volumes

2.3 System Architecture Component Definitions

2.3.1 System Architecture Component A

The Architecture Component Definitions section provides narrative describing and explain-
ing each architecture component in the System Architecture Model, and identifies specific
elements that comprise that component in this system. The following are examples of
architecture components and elements:

Architecture Component Component Elements

Database Server Server Hardware Configuration
Server Operating System
DBMS

Client Application Development Tool
Online Help Tool
Client Characteristics

2.3.2 System Architecture Component B

The System Architecture Design section provides detailed descriptions of each product
implementing architecture components, and explains the rationale for product selection.

84 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-3 (Continued)

Technical Architecture

3.0 SYSTEM ARCHITECTURE DESIGN

3.1 System Architecture Component A

3.1.1 Component Functions
3.1.2 Technical Considerations
3.1.3 Selected Product(s)
3.1.4 Selection Rationale
3.1.5 Architecture Risks

For each System Architecture Component, the narrative describes specific Component
Functions, requirements and other Technical Considerations that were used in the decision-
making process, as well as any specific Products selected to implement this component. The
Selection Rationale identifies any other products that may have been considered, and pro-
vides rationale for the decision. Architecture Risks identifies any potential risks associated
with the architecture element.

3.2 System Architecture Component B

4.0 SYSTEM CONSTRUCTION ENVIRONMENT

The System Construction Environment section details the various environments necessary
to enable system construction and testing.

4.1 Development Environment

4.1.1 Developer Workstation Configuration
4.1.2 Supporting Development Infrastructure Configuration

4.2 QA Environment

4.2.1 QA Workstation Configuration

4.2.2 Supporting QA Infrastructure Configuration

4.3 Acceptance Environment

4.3.1 Acceptance Workstation Configuration

4.3.2 Supporting Acceptance Infrastructure Configuration

For each environment necessary for system construction (Development, QA and
Acceptance), provide detailed specifications for the Workstation and Supporting
Infrastructure that will be used (including hardware and operating system requirements, all
necessary installed packages and tools, and needed directory structures that will be utilized
to store all construction components).

Section III:3 System Design 85
NYS Project Management Guidebook

3.3 DEFINE SYSTEM STANDARDS

Purpose

The purpose of the Define System Standards process is to
develop and identify programming techniques, naming conven-
tions, and all other standards that will be used to introduce con-
sistency and conformity throughout system development efforts.

Description

In an attempt to maximize efficiencies in the design, coding,
testing and management of the system, it is important to define
system standards early in the design process. System standards
typically fall into three basic categories:

� Technical Development

� Configuration Management

� Release Management

Technical Development standards describe naming conven-
tions, programming techniques, screen formatting conventions,

documentation formats, and reusable components.
These may be established for all projects in a large
data processing/IT shop, or may be developed
uniquely for a particular project. In addition, they
may be unique to a development team, or industry-
standard and universally accepted.

Configuration Management standards provide the
basis for management of the development of individ-
ual software components of the system. These stan-
dards ensure that functions such as controlling and
tracking changes to the software being developed,
along with backup and recovery strategies, are
inherent in the development process.

Establishing Release Management standards at this
point in the lifecycle ensures that the right level of
planning occurs surrounding both the initial and
subsequent releases of the system to the Customers
and Stakeholders. These standards are also neces-

sary for successfully managing migrations of the application to
the various testing environments.

Roles

� Project Manager

� Project Sponsor

� Business Analyst

� Facilitator

� Data/Process Modeler

� Technical Lead/Architect

� SQA Analyst

� Technical Services

� Information Security Officer

� Technical Support

� Customer Decision-Maker

� Customer Representative

� Performing Organization

� Stakeholders

Deliverable

� System Standards – A document detailing the
various standards to be applied and adhered to throughout
the execution of the project. Standards applicable to
each phase of the lifecycle will be identified, along with
examples, where applicable.

86 Section III:3 System Design

NYS Project Management Guidebook

It is essential that the technical architecture system standards be firmly established

before starting further System Design and System Construction activities. Deferring

these activities can have a significant impact later in the project, often causing rework or dis-

carding of completed work products. The later in the project that these decisions are made, or

that prior decisions are reversed, the larger the “snowball effect” in terms of the amount of work

that needs to be reviewed and potentially revised.

Figure 3-4 System Standards Template

Section III:3 System Design 87
NYS Project Management Guidebook

< Name of Agency >

System Standards
< System Name >

Agency

Project Name

Project Sponsor

Project Manager

Document Date

Prepared By

Enter the name of the Agency for which the system is being developed.
Enter the Project Name, and the names of the Project Manager and the Project Sponsor.
Enter the Date as of which this document is current.
Enter the names of the Project Team members by whom the document was Prepared.

88 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-4 (Continued)

System Standards

TABLE OF CONTENTS

The Table of Contents should be at least two levels deep.

1.0 DOCUMENT SCOPE

Document Scope describes the context and the goals of this document in a narrative.

Example:
This document defines standards that will be followed in the development of the <XYZ>
system. The following sources were considered in development of these standards:

� <Agency> Programming Standards, <v. 1.6>
� <Agency> Naming Conventions, <Date>
� <Agency> Configuration Management Procedures, <Date>.

All deviations from the <Agency> standards are annotated and explained.
This document addresses standards for the following areas:

� Graphical User Interface
� Reporting
� Application Navigation
� Error Prevention and Correction
� Programming
� Documentation
� Naming Conventions
� Database Access and Views
� Data Creation and Updating
� Stored Procedures

The Document Scope narrative also provides an overview of the efforts conducted to under-
stand the existing standards in the organization, and to research those areas for which no
appropriate standards exist.

Section III:3 System Design 89
NYS Project Management Guidebook

Figure 3-4 (Continued)

System Standards

2.0 MODULE DEVELOPMENT STANDARDS

2.1 Graphical User Interface

Graphical User Interface standards address such areas as:
� Screen Design (Resolution, layout, menus, tabs, messages, and other screen compo-

nents)
� Visual Design (Colors, fonts, icons, buttons, symbols, system pointer, tabs and other

visual components)
� Operational Design (GUI component behavior, operational consistency, application

response (instructions and messages), and other operational behaviors)
� Usability Design (simplicity, clarity, fault tolerance, system feedback, and other usability

attributes)

2.2 Reporting

Reporting standards address such areas as:
� Report Design (Layout, Mandatory fields, Identifying fields, Fonts, Colors, Graphical

elements)
� Numerical Data Representation (Formats, Totals, Rounding)
� Usability Design (Simplicity, clarity, messages, explanations, user-controlled variables)

2.3 Application Navigation

Application Navigation standards address such areas as:
� Menu Structure (Levels, access, behavior, verbosity)
� Selective Navigation (Beginner, Intermediate and Expert navigation paths)
� Navigation Aids (Navigation buttons, keyboard commands, navigational messages)
� Keyboard Shortcuts (Special key combinations for frequently-used operations

2.4 Error Prevention and Correction

Error Prevention and Correction standards address such areas as:
� Input Guidance (Variable field protection, value selection, informational messages,

directional messages, input fields position/presentation/behavior)
� Input Validation (Validation order, edit checking, alternative presentation, choice

verification)
� Error Handling (Routines, messages, responses)

2.5 Programming

Programming standards address such areas as:
� Coding standards (Organization, structure, style, consistency)
� Documentation standards (Placement, verbosity, style)
� Development environment elements (Objects, packages, methods, variables,

parameters, etc.)
� Debugging (Techniques, routines, messages)

90 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-4 (Continued)

System Standards
2.6 Documentation

Documentation standards address such areas as:
� Technical Specifications (Organization, format, level of detail, style)
� Test plans (Organization, format)
� Test results (Format, responsibility, process)
� Defect logs (Format, responsibility, process)
� User materials (Organization, presentation, format, style)
� Technical Documentation (Organization, presentation, format, style)

2.7 Naming Conventions

Naming Conventions standards address such areas as:
� Overall naming schema (Concepts, hierarchy, precedents)
� Overall naming conventions (Terminology, use of abbreviations, case, length, format,

consistency, precedence, extensions, prefixes and suffixes)
� Development environment naming conventions by element (Module, object, package,

variable, parameter, stored procedures)

2.8 Database, Data Access and Data Views

Database and Data related standards address such areas as:
� Database standards (Scripts, tables, rows, columns)
� Data access (Record locking, online updating techniques, batch updating techniques,

deadlocks, navigation techniques)
� Data views (Creating, updating, using)
� Stored procedures and triggers (Conventions, techniques)

2.9 Miscellaneous Standards

Miscellaneous standards address any other Technical Development areas that are not cov-
ered in sections above.

3.0 CONFIGURATION MANAGEMENT STANDARDS

3.1 Development Environment

3.1.1 Software Management

3.1.2 Database Management

Section III:3 System Design 91
NYS Project Management Guidebook

Figure 3-4 (Continued)

System Standards

3.2 QA Environment

3.2.1 Software Management

3.2.2 Database Management

3.3 Acceptance Environment

3.3.1 Software Management

3.3.2 Database Management

For each environment necessary for system construction (Development, QA and
Acceptance), identify Software Management procedures (source code version control,
application version control, backup and recovery, etc.) and describe procedures and controls
used for Database Management (data sources, migration and synchronization procedures,
data backup and recovery, etc.)

4.0 RELEASE MANAGEMENT STANDARDS

4.1 Migration from Development to QA Environments

4.1.1 Software Migration

4.1.2 Data Migration

4.2 Migration from QA to Acceptance Environments

4.2.1 Software Migration

4.2.2 Data Migration

Release Management Standards detail how source code, compiled applications, and data
will be migrated among the various environments (Development, QA, and Acceptance).

5.0 TESTING STANDARDS

5.1 Unit Testing

5.1.1 Unit Testing Standards

5.1.2 Unit Testing Tools

5.2 Integration and System Testing

5.2.1 Integration/System Testing Standards

5.2.2 Integration/System Testing Tools

5.3 Acceptance Testing

5.3.1 Acceptance Testing Standards

5.3.2 Acceptance Testing Tools

For each kind of testing performed (Unit, Integration/System and Acceptance), define
Testing Standards and suggested approaches to setting up test cases and conducting tests,
and identify and describe Testing Tools that should be utilized in that testing cycle.

3.4 CREATE PHYSICAL DATABASE

Purpose

The purpose of the Create Physical Database process is to
accommodate all of the data that needs to be managed by the
system within the system database tables and files. This infor-
mation must be stored in a manner that ensures its reliability,
accuracy, and completeness, while minimizing redundancy and
meeting system performance expectations.

Description

The Create Physical Database process expands on the Logical
Data Model created during System Requirements Analysis to
identify physical database schemas, file formats, and data
views required by the system. While the majority of new sys-
tems developed take advantage of relational database tech-
nologies, it is important to consider the feasibility of this
approach for handling the full extent of the system’s data needs.
Often, data will be used in the exchange of information between

the system being developed and other
existing legacy systems. The system
interfaces may require the creation and
management of data that, for valid rea-
sons, uses other non-relational storage
mechanisms.

It is important to review existing data-
base administration, data distribution,
and data management policies and guide-
lines prior to proceeding with the defini-
tion of the physical database. These poli-
cies often dictate approaches to auditing,
archiving, and recovering data that may
need to be taken into consideration.

92 Section III:3 System Design

NYS Project Management Guidebook

Roles

� Project Manager

� Project Sponsor

� Business Analyst

� Facilitator

� Data/Process Modeler

� Technical Lead/Architect

� SQA Analyst

� Technical Services

� Information Security Officer

� Technical Support

� Customer Decision-Maker

� Customer Representative

� Performing Organization

� Stakeholders

When designing the database, it is important to accurately esti-
mate anticipated data usage and volumes. Answers to basic
questions will help determine the most efficient database
schemas, and will enable the team to optimize the database to
achieve desired performance. Sample considerations include:

� Expectations surrounding the use of the data.

� The number of users expected to access the data
simultaneously during normal usage.

� Anticipated peak user loads on the system.

� Data retention needs (e.g., is it necessary to save specific
details of each record, or is it sufficient for historical
purposes to simply maintain summarized data?).

Finally, it is critical to understand the data needs of all envi-
ronments associated with the system being developed. Many
organizations require multiple environments for development,
testing, quality assurance, and production of the system, with
each environment having its own unique characteristics. All of
these requirements must be taken into consideration when
designing and creating the physical database.

This process results in the production of database creation
scripts and file utilities that, when executed, produce the physi-
cal database tables and system data files required by the sys-
tem. The creation of these scripts, sometimes through the use of
automated tools, equips the development team with a base upon
which all future enhancements or refinements to the database
can be made. Once the scripts have been modified and tested, a
simple rerunning of the scripts will produce the enhanced data-
base.

Section III:3 System Design 93
NYS Project Management Guidebook

Data views are an effective way to manage the presentation of data to the user as well

as to accommodate many of the security needs of the system. Sometimes, data views

are overlooked until late in the project, often defined and created during the construction or

testing phases in response to security or performance issues. This is a clear case of “you can

pay me now or pay me more later”, with the costs associated with implementing these views

late in the project often exceeding what they would have been had data views been a focus

in the early design efforts.

Deliverable

� Database and System Files – Physical data storage
repositories created to support the data management
needs of the application being developed, either in the
form of a relational database, tables, and structures, or in
the form of structured system files.

3.5 PROTOTYPE SYSTEM COMPONENTS

Purpose

The purpose of the Prototype System Components phase is
two-fold – to provide early examples of system screens and
reports that demonstrate to the Customer the proposed look
and feel of the system; and to validate the applicability and fea-
sibility of proposed technical components as they pertain to the
overall technical solution.

Description

Prototyping system components is one of the most popular
methods used to help the Project Team to make educated

design decisions based on an actual hands-on
assessment of various alternatives. Prototyping
also helps to mitigate the risks associated with
the introduction of new technologies or toolsets
into an organization.

Often, throughout the design of a system, the
Project Team may be faced with having to choose
from several alternative approaches. They may
have to select from a variety of technical archi-
tectures, package components, or graphical user
interface (GUI) designs. In order to select the best
approach for the project, it is necessary to deter-
mine what best meets the Customer’s needs and
expectations, and is technically feasible.

Prototyping activities will often provide informa-
tion on the performance and usability of the sys-
tem, as well as insights into the design process.

94 Section III:3 System Design

NYS Project Management Guidebook

Roles

� Project Manager

� Project Sponsor

� Business Analyst

� Facilitator

� Data/Process Modeler

� Technical Lead/Architect

� Application Developers

� SQA Analyst

� Technical Services

� Information Security Officer

� Technical Support

� Customer Decision-Maker

� Customer Representative

� Performing Organization

� Stakeholders

Prototyping for Illustrative Purposes

The Functional Specification captured the operational and
informational needs of the system. While there may have been
some preliminary prototyping activities performed during
System Requirements Analysis, these efforts are typically rudi-
mentary, and do not contain the level of detail necessary for the
design team to fully lay out the user interface aspects of the
system. In order to successfully complete the design of both
the user interface and the related system reports, it is often
useful to conduct iterative prototypes of the system.

Aspects of the system addressed through prototyping should
include screen layouts, navigation, controls (such as push but-
tons), and presentation styles. With respect to reports, prototyp-
ing can easily illustrate the proposed approach to queries, report
selection, and filtering of data based on various reporting options.

Prototyping enables Customers to get a clearer picture of the
system being developed and presents an opportunity for them
to ensure that the Project Team understands their require-
ments. It provides all project participants with a common view
of the system as it is being designed, and allows for open com-
munications and input into how the screens and reports can be
improved very early in the project. Whether these prototypes
are done with paper and pen or with some elaborate design and
development tool does not matter. The key is that proactively
accommodating these refinements throughout the Design
phase, instead of during either the development or testing of
the system, eliminates many of the pitfalls that are typical of
projects that exceed their allocated budget, timeframe, or both.

Section III:3 System Design 95
NYS Project Management Guidebook

Another benefit to prototyping is that by actively involving the Customers in the design

of the system, a sense of ownership and buy-in is created that might not otherwise be

possible, or that certainly could be more difficult to achieve if the system were designed with-

out their input.

In addition, there are advantages to engaging the Application Developers early in System

Design. While these developers will make their primary contribution to the project during

System Construction, involvement during System Design will enhance their overall under-

standing of the system, the business objectives, and the rationale behind many of the design

decisions, all of which will contribute towards a stronger final product.

Prototyping as a Means of Performing Proof of Concept

In addition to being a means of illustrating and refining the
design of the system, prototyping is also a valuable approach
used prior to the development of the entire solution, to validate
that individual components of the system will operate as
expected. This can be used to confirm whether the functional-
ity of purchased hardware or software meets expectations, for
example, or to substantiate architectural decisions made earli-
er in System Design. Other areas of the design in which proto-
typing can be used include system-to-system interfaces, secu-
rity, and off-the-shelf ad hoc reporting tools.

Regardless of the specific prototyping activities performed,
they can serve to validate that the design solution being devel-
oped provides the best overall fit with a system that satisfies
functional requirements and meets system performance goals.

Deliverable

� Prototype – A set of work products that 1) illustrate how
the system being developed may look when finished, and
serve as a model for subsequent development efforts, and
2) describe the applicability of one or more potential
solutions, technologies, approaches, or components to
satisfying the requirements associated with the system
being developed.

96 Section III:3 System Design

NYS Project Management Guidebook

A word of caution … although the benefits of prototyping can be tremendous, and

more information is learned with each iteration, prototyping without sufficient manage-

ment controls can quickly take on a life of its own. It is important to set expectations from the

start regarding the number of iterations that your Project Plan will accommodate. Otherwise,

the Project Team can easily find itself in an endless procession of “nips and tucks” and “minor

revisions” that all add up to extra effort and increased risk to the schedule and budget.

Knowing that there are a finite number of prototype reviews planned can also encourage more

active participation and involvement on the part of the Customers, since they should under-

stand that they risk “missing the boat” if their feedback comes too late in the project.

In addition, many project participants often look at prototypes as an indication that the system

is close to functional. This can lead to false impressions and overly optimistic time predictions

if not properly managed.

3.6 PRODUCE TECHNICAL SPECIFICATIONS

Purpose

The purpose of Produce Technical Specifications (or ‘Tech
Specs’) is to perform the critical process of translating all
requirements captured during System Requirements Analysis
into a set of documents forming the framework upon which all
upcoming application development, testing, and implementa-
tion activities will be performed by the Project Team.

Description

Technical Specifications take many forms, including diagrams,
structured English, decision trees, and pseudo-code.

Regardless of the method used to cap-
ture and communicate the information,
the main purpose is to encapsulate
every possible detail needed to com-
pletely define the various technical mod-
ules that must be produced to create the
new system. The accuracy and com-
pleteness of these details are essential,
as these specifications drive many of the
subsequent SDLC activities – most
notably, the construction of each of the
system modules, and the development of
the test plans to be used in the eventual
validation of the system.

During System Requirements Analysis,
the role of the Business Analyst was
critical to ensure that the full set of
business requirements was captured
accurately and completely. During

System Design, the Business Analyst role expands to include
the function of liaison between the business world and the
technical members of the Project Team.

Section III:3 System Design 97
NYS Project Management Guidebook

Roles

� Project Manager

� Project Sponsor

� Business Analyst

� Facilitator

� Data/Process Modeler

� Technical Lead/Architect

� SQA Analyst

� Technical Services

� Information Security Officer

� Technical Support

� Customer Decision-Maker

� Customer Representative

� Performing Organization

� Stakeholders

The Business Analyst should also have an active role in the
development of both test plans and data conversion strategies.
These efforts are most successful when input is solicited from
the Customer Representatives, taking into consideration the
full spectrum of available business expertise. Techniques used
in the development of these strategies often include interviews
and JAD sessions.

As with system requirements, it is important for the Project
Team to address all dimensions of the solution – specifically,
the functional, technical, operational, and transitional needs of
the system – when producing these Technical Specifications.
Figure 3-5 illustrates the types of considerations that the
Project Team must keep in mind specific to System Design.

98 Section III:3 System Design

NYS Project Management Guidebook

A common mistake made on many System Development projects is attempting to

reduce or remove the Business Analyst function from the Project Team once the

requirements have been captured. This can lead to many potential pitfalls, since it then places

the burden of transforming these requirements into Technical Specifications on the shoulders

of team members who may not have been actively involved in the JAD sessions or interviews

from which the requirements were derived.

In fact, if project budget and staff availability permit, there can be significant benefits gained by

maintaining a Business Analyst presence on the team throughout the entire project, ensuring

continuity in understanding the objectives and operations of the various system components.

Figure 3-5 System Design Considerations

Section III:3
 System

 D
esign

9
9

N
YS Project M

anagem
ent G

uidebook

System Development Lifecycle

System
Initiation

System
Requirements

Analysis

System
Design

System
Construction

System
Acceptance

System
Implementation

Functional
Requirements

Typical Considerations
• Common Functions
• GUI Functions
• Reporting Functions
• Interface Functions
• Batch Functions
• Security Functions

Technical
Requirements

• Accessibilty
• Encryption
• Hosting
• Environment
• Disaster Recovery

• System Performance
• Data Archival
• Audit and Controls
• System Administration
• SQA
• Business Continuity

• Data Conversion
• Release Validation
• Documentation
• Training
• Deployment

Operational
Requirements

Trasnsitional
Requirements

Impacts the
Business
Process

Impacts the
System

Infrastructure

Impacts
Operations and

Support

Impacts
Implementation

Prepare for
Systems Design

Define Technical
Architecture

Define Systems
Standards

Create Physical
Database

Prototype System
Components

Produce Technical
Specifications

Representative Requirements To Be Captured

�Error handling, repeatable functions, communications, utilities.
�Data entry and navigation screens, controls, and help functions.
�Report selection, filtering, and generation routines.
�System interface/data exchange capabilities.
�Periodic transaction processing functions.

�System architecture and process distribution strategies.
�Data encryption/decryption functions.
�Application hosting strategies
�Disaster recovery modules.

�Transaction processing and reporting architecture.
�Performance optimization strategies.
�System management and administration capabilities.
�Audit, archival, and quality assurance processes.

�Data extract, cleansing, import, and validation utilities.
�System test strategies, plans, and utilities.
�Training and documentation strategies, outlines, curriculum,

and prototypes.
�Application deployment strategies and utilities.

Managing the Project Team and the Customer relationship
throughout the creation of the Technical Specifications can be
one of the more challenging aspects of a system development
project. Typically, there is pressure to produce components of
the application prior to the conclusion of System Design.
Reasons for this include:

� Customers begin to get anxious to “see” progress. They
begin to look at the work to date as a series of documents,
none of which directly results in the development of a
screen or report. As a result, they begin to push for devel-
opment to begin.

� The Project Team may want to begin to code those compo-
nents of the system that are defined early in the design
phase. Although there can be benefits to overlapping
Design and Construction, the key is to do so in a controlled
fashion.

� Project Team members may begin to view the production of
exhaustive technical design specifications as overkill. This
is particularly true if the individuals producing the specifi-
cations are those who will also develop the software.
Since many of the technical details are already “in their
heads”, they just assume that they will recall necessary
details during the development of the system.

Capturing complete, detailed Technical Specifications is essen-
tial for the development of a robust and successful system.
Detailed specifications are also critical when system require-
ments change over time and the impact of the change on the
system modules must be assessed.

As illustrated in Figure 3-5, designing a complete solution
means considering each aspect of the requirements and design-
ing a set of Technical Specifications that supports all dimen-
sions of the project. Detailed Tech Specs not only define the
specific application modules or functions to be developed, but
also establish the framework for all remaining phases of the
lifecycle. For example, these specifications will define:

� detailed module specs for all system components,
whether they are common routines, GUI elements, report
and batch functions, or interfaces;

� the approach for implementing the security strategy
(defined in the Technical Architecture) throughout each
module of the system;

100 Section III:3 System Design

NYS Project Management Guidebook

� system performance expectations and a strategy for
meeting them given anticipated system usage and peak
processing loads;

� cumulative testing strategies enabling validation of all
levels of the application from individual modules through
a completely integrated system;

� a complete data conversion approach addressing the
cleansing and loading of historical data as well as
population of new data not currently available in any
existing system;

� documentation and training strategies aligned with the
overall application, enabling development of comprehen-
sive training curricula, and supporting materials; and

� deployment plans addressing the distribution and
transition of the system, that can be reviewed with
and validated by the Consumers.

Since System Construction logically follows System Design in
the overall lifecycle, the team’s focus will be on designing the
application components needed to build the final solution.
Other critical aspects of the project must also be addressed.
While many of the activities surrounding these efforts may occur
later in the project, the Project Manager must ensure that the
planning and coordination of these efforts occur throughout
System Design, coincident with the application design.

Section III:3 System Design 101
NYS Project Management Guidebook

The Project Manager ’s role is to communicate the importance of producing complete

and accurate Technical Specifications, demonstrate meaningful progress, and exude

confidence to the Customers and Stakeholders. The best time to start delivering this message

is when this process is first kicked off.

Creative and quantifiable evidence must be provided to prove that progress is being made

through the development of specifications. Common indicators of progress are counts of the

number of Tech Specs initiated, completed, reviewed and approved. Remember, a picture is

worth a thousand words, so find ways to depict this graphically in your Project Status Reports.

Everyone needs to understand the increased risks and potential cost impact of taking shortcuts,

even though shortcuts could give the sense that more progress is being made because they

could lead to System Construction earlier in the project.

And, don’t forget to take every advantage of prototyping. This remains one of the most effec-

tive tools for generating buy-in and demonstrating progress.

The following pages provide a detailed decomposition of three
representative areas of the system – data conversion, testing,
and deployment. The intent is to demonstrate the level of
thought and consideration that must go into planning and
designing every element outlined in the Technical Specification.

Data Conversion

Much of the data required by the system will be entered through
normal day-to-day business operations, whether through man-
ual input or through automated mechanisms. Additional data
may be required, however, before the system can effectively
begin operation, such as:

� Historical data, typically found on existing legacy sys-
tems, that may need to be migrated to the new system to
provide a basis for future calculations, historical or trend
reports, etc.

� Reference data, also known as lookup data, which can be
used to populate common tables upon which other data is
dependent (e.g., system codes that might be referenced
across multiple tables). This information may or may not
reside on existing systems, depending upon how the
eventual design of the new system maps to the legacy
environments.

� New data, essential to the initial operation of the system
being built, that may not be available on any legacy systems.

Whether or not the data the new system requires exists on lega-
cy systems (or in spreadsheets, or on scraps of paper, etc.), the
Project Manager must ensure that the Project Schedule
includes the steps needed to obtain all required data in a for-
mat compatible with the new environment. This often necessi-
tates the development of conversion and migration software
modules, to support and ensure successful completion of the
data conversion. Research may also be needed to determine
whether data is valid, and cooperation between multiple organ-
izations may be required as attempts are made to identify and
resolve conflicting data.

It is not uncommon for many Project Managers to delay plan-
ning of this effort until later in the project. As a result, there is
often a last minute scramble to try to account for and address
all of the potential issues that surround the collection and val-

102 Section III:3 System Design

NYS Project Management Guidebook

idation of the data. By evaluating data needs and planning how
best to address them during System Design, the Project Manager
will better position the Project Team to take all necessary
actions throughout the construction of the system.

While evaluating initial data needs (often referred to as “Day
One” data, since it refers to the data needed on the first day of
system operation), it is important to perform a gap analysis
against all existing data. This identifies data that is needed but
not immediately available. This process may also require the
development of software modules, whose sole purpose is to
pre-populate tables as part of the overall data conversion
process, but which will likely not be used again once the sys-
tem is operational.

Ultimately, the goal is to develop a data conversion plan. The
plan outlines all of the necessary data population efforts
required prior to the system going live, and assigns responsi-
bilities for these efforts to the Project Team, Customers, and
anyone else who may need to take an active role in this effort.

One final consideration when planning data conversion is its
potential impact on an organization’s operations. The time it
takes to physically convert, populate, and validate system data
can be lengthy, depending upon the volume of data, and the
variety of sources from which information will be pulled. It is
not uncommon for data conversion plans to require that legacy
data be “frozen” as of a certain date, after which any data
entered into the legacy system will not automatically be con-
verted. The data conversion plan must ultimately account for
how any data entered beyond the freeze date will be entered

Section III:3 System Design 103
NYS Project Management Guidebook

Because data is often only as good as the source from which it originated, you need to

ensure that you involve your Customers in evaluating and validating the information

that may eventually be loaded into your system. Often there are historical implications or

nuances embedded in the information that may not immediately be evident to someone unfa-

miliar with the data. The data itself may also imply business rules that may not have been cap-

tured during System Requirements Analysis. Historical data often contains “dummy” or other-

wise invalid data to flag the existence of an exception situation. Without planning for direct and

active involvement of your Customers during the data conversion process, the risk of missing

or mishandling critical system data is greatly increased.

into the new system. If there is a need to run the new and lega-
cy systems in parallel for some period of time to allow for val-
idation of the new system, there may be additional data con-
version implications that must be addressed. All identified
impacts should be captured in the Project Implementation and
Transition Plan and the Organizational Change Management
Plan, both defined in the Project Planning phase of the Project
Management Lifecycle.

Testing

Test plans created in the Produce Technical Specifications
process define the overall strategy for validating the function-
ality of the system being developed, as well as the individual
test cases that will be performed in the execution of this strat-
egy. Additionally, the environments in which these tests will be
executed must be defined in detail.

Four common types of testing are:

� Unit Testing, where individual system components are
independently tested as they are developed to ensure that
each logic path contained within each module performs as
expected. Many tests performed during unit testing can be
used for more than one module (error handling, spell
checking of screens and reports, etc.).

� Integration Testing, where multiple, related elements of
the system are tested together to validate components of
the system, and to ensure that the appropriate edits and
controls are functioning correctly. This testing concludes
with the entire system being tested as a whole. “Bottom
up” and/or “top down” testing approaches can be used.
With bottom up testing, the lowest level modules are creat-
ed and tested first, and successive layers of functionality
are added as they are developed. Top down testing takes
the opposite approach, where the highest-level modules are
developed and tested, while lower level “stubs” are created
and invoked until the actual modules are available. These
stubs are temporary software modules that are created in
order to enable the higher-level routines to be validated,
but that do not yet perform the full set of functions needed
by the system. Most testing strategies employ a mix of
both approaches.

104 Section III:3 System Design

NYS Project Management Guidebook

� System Testing, where the entire system is linked together
and tested to validate that it meets the operational require-
ments defined during System Requirements Analysis.
Factors that are commonly tested at this level include per-
formance, load, boundary, and external interfaces.

� Acceptance Testing, where the Customer Representatives,
and potentially Consumers and Stakeholders, perform vali-
dation tests to ensure that the developed system meets
their expectations and needs. The results of this testing
usually determine whether or not the system is ready to be
released into production, so it is critical to define and
understand the plan for completing this testing as early in
the project as possible.

Thoroughly documented and detailed test cases provide two
advantages. First, they enable the execution of these tests to
be performed by any Project Team member, not just those team
members that created the test cases. Secondly, they provide
the basis for future regression testing efforts, where all aspects
of system functionality are revalidated whenever changes are
introduced to the system (most likely during the long-term
maintenance and support of the system once it is in produc-
tion). Involving the SQA Analyst in the development or review
of these test cases can help to ensure that they can be lever-
aged by both the initial Project Team and the Performing
Organization once they have assumed ownership of the system.

The following chart illustrates when each of these testing
cycles is used within the overall testing lifecycle. There is a
heavy emphasis on unit testing at the beginning of development
efforts, with a gradual shift through Integration and System
Testing, and finally into User Acceptance Testing efforts as all
elements of the system become available.

Section III:3 System Design 105
NYS Project Management Guidebook

Figure 3-6 Typical Testing Patterns

As Figure 3-6 illustrates, testing cycles overlap each other, pri-
marily because multiple components of the system are in dif-
ferent stages of the lifecycle at any point in time. As illustrat-
ed by the dashed line, it is possible that on any given day, the
system could be undergoing all stages of testing concurrently.
Reasons for this include:

� Modules that may have been developed early in System
Construction may already have gone through unit and sys-
tem testing, while unit testing of recently developed mod-
ules may just be starting.

� Testing may uncover problems with the system, frequently
resulting in coding changes being made to one or more
modules, which then require retesting.

Since testing is often iterative and testing activities may occur
concurrently, it is important to ensure that the testing strategy
accommodates these scenarios. Performing test planning
activities at this stage of the project is critical so that testing
participants are fully aware of the time commitments required
to prepare for and execute these tests. When developing a test

106 Section III:3 System Design

NYS Project Management Guidebook
Le

ve
l o

f E
ff

or
t

Project Timeline

Unit
Integration
System
Acceptance

plan, it is important to assess and define many aspects of the
testing strategy. Factors to consider include:

� Testing objectives

� Scope of testing (both what is in and what is out of scope)

� Responsibilities

� Testing approach

� Test data needed to execute the tests

� Criteria for suspending and resuming testing

� Testing sequence

� Defect reporting and criteria

Deployment Planning

By this point, the Project Manager and Project Team have
determined what needs to be built, how to build it, and how the
Performing Organization is going to use it. The one remaining
piece of the puzzle is to identify how the system being created
is going to be made available for use once testing has been
completed.

Again, the tendency might be to delay this planning since the
actual deployment of the system may be far in the future.
Proper planning of deployment activities, however, is the key to
their success. The method through which the system will be
made available may dictate the need for certain System
Construction activities, and the testing process created during
System Design must be robust enough to validate this deploy-

Section III:3 System Design 107
NYS Project Management Guidebook

Often one of the most difficult aspects of testing an application is defining and creat-

ing the appropriate set of test data needed to validate system functionality. This is espe-

cially true in environments that require special processing of data at the end of specific time

periods (monthly, quarterly, annually, etc.), or need to manage data across multiple fiscal years.

Preparation of this data can be very time consuming, and it is in System Design that the scope

and responsibilities for data preparation must be clearly defined.

Also, while the creation of representative or “dummy” test data may be acceptable for tests per-

formed internally by the Application Developers, real or meaningful data should employed in

any testing that involves Customer Representatives.

ment process. The full Project Team, therefore, must under-
stand the deployment plan and its effect on other design, devel-
opment, and testing activities. This information must also be
clearly communicated to, and validated with, the Customers to
ensure compatibility with their existing operations, infrastruc-
ture and expectations. Factors such as whether the system will
require new production hardware must be identified and con-
firmed early in the project, to allow for proper planning of fiscal
and logistical impacts (see corresponding Project Budget and
Project Implementation and Transition Plan templates in the
Project Planning phase of the Project Management Lifecycle.)

When the time comes to move the application into production,
there will be a set of activities for the team to perform. To the
extent possible, this set of activities should be tested before
actual deployment to ensure that the deployment will proceed
smoothly.

A final element of the deployment strategy is the communica-
tion of the overall plan. This will allow for coordination with
the data conversion plan (ensuring availability of data), and will
enable the Consumers to coordinate the system rollout with
their day-to-day business activities, generating enthusiasm and
ownership toward the system as they prepare for its arrival.
This topic is explored in more detail in the Project Planning
phase of the Project Management Lifecycle.

Deliverable

� Technical Specifications – A compilation of system
diagrams, module specifications, and test plans that serve
as a detailed, comprehensive blueprint for the system.

108 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-7 Technical Specifications Template

Section III:3 System Design 109
NYS Project Management Guidebook

< Name of Agency >

Technical Specifications
< System Name >

Agency

Project Name

Project Sponsor

Project Manager

Document Date

Prepared By

Enter the name of the Agency for which the system is being developed.
Enter the Project Name, and the names of the Project Manager and the Project Sponsor.
Enter the Date as of which this document is current.
Enter the names of the Project Team members by whom the document was Prepared.

110 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications

TABLE OF CONTENTS

The Table of Contents should be at least two levels deep.

1.0 DOCUMENT SCOPE

Document Scope describes the context and the goals of this document in a narrative.

Example:
This document describes the Technical Specifications or the <XYZ> System that will be
developed to satisfy business requirements and implement functionality as documented in
the Business Requirements Document, <Date>, and the Functional Specification, <Date>
and confirmed via <XYZ> System Prototype, accepted on <Date>.

The goal of this Technical Specifications document is to define the system and its develop-
ment and testing strategies in enough detail to enable the Application Developers to con-
struct and test the system with minimal need for further explanation.

This document places the system in its context from Technical Architecture, Customer
Interface, and System Development perspectives, provides detailed Module Specifications
for all its components, details Unit, Integration and System Plans, and outlines Deployment
and Transition plans.

Section III:3 System Design 111
NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications
2.0 SYSTEM ARCHITECTURE

System Architecture section provides the “big picture” view of the system from technical,
functional and development perspectives, and puts it in context with the rest of the organiza-
tion’s systems portfolio. This section repeats some of the information from Section 2 (Overall
Technical Architecture) of the Technical Architecture document, and from Section 2 (General
Functional Specifications) of the Functional Specification document, with their contents refined
as a result of the prototyping and other System Design efforts.

2.1 Refined System Context Diagram

The Refined System Context Diagram shows how this system integrates into the Agency’s
application portfolio. All external dependencies and influences should be noted, as well as all
data sources and outputs.

2.2 Refined System Architecture Context Diagram

The Refined System Architecture Context Diagram shows how the system’s hardware/soft-
ware platform fits into the existing environment.

2.3 Refined System Architecture Model

The Refined System Architecture Model represents the various architecture components
that comprise the System, and shows their interrelationships. This model presents the view of
the system from the technical architecture perspective, as opposed to the Consumer-driven
perspective of the System Interface Diagram.

2.4 Refined Business Flow Diagram

The Refined Business Flow Diagram shows how the Customer and Consumer business
units will interface with the system.

2.5 Refined System Interface Diagram

The Refined System Interface Diagram shows the application structure (menu structure and
navigation of the online application) and batch/utility structure (organization and flow of report-
ing and other interfaces), which is a refinement of the System Interface Diagram from the
Functional Specification document. The System Interface Diagram presents the view of the
system from the Consumer perspective.

112 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications

2.6 System Development Diagram

The System Development Diagram shows the system from the development perspective,
according to how the components of the system will be coded, tested, and integrated.
Beginning with the application structure established in the Functional Specification, a modified
list of sub-systems will be identified based on development efficiencies and testing and
deployment considerations. Each sub-system consists of a number of Modules, which will
be assigned to individual Application Developers for coding and unit-testing; each sub-system
constitutes a work packet that will be assigned to a group of Application Developers for
construction and integration testing.

3.0 MODULE SPECIFICATIONS

Module Specifications detail the design of each system module, organized by sub-system
(following the System Development Diagram). A module may be a collection of code that will
present a Consumer interface, or it could be a utility, a database stored procedure, or another
common object.

3.1 Sub-System A

Depending upon how the system has been decomposed into sub-systems, these Sub-System
sections contain specifications for all Modules comprising the sub-systems. Sub-systems may
be defined by functional area (e.g., security, reports, etc.), or by business focus (e.g., accounts
receivable, payroll, etc.)

3.1.1 Module A-1

3.1.1.1 Module Overview

3.1.1.2 Interface Prototype

3.1.1.3 Customer Decision-Maker(s)

3.1.1.4 Customer Representative(s)

A Module may be a collection of code that will present a Consumer interface, or it could be a
utility, a database stored procedure, or another common object. Each module is described in
sufficient detail as to enable the Application Developers to construct and test it with minimal
further explanation:

Module Overview explains how the module will satisfy the business requirements, and how it
fits into the sub-system.

Interface Prototype shows the module’s interface (if applicable), as accepted by the
Customers during the Prototype System Components process.

Customer Decision-Makers lists the Customers who have the sign-off authority to accept the
module.

Customer Representatives lists the Customers who are the Functional Subject Matter
Experts for this module (They will answer questions about the module and will conduct its
acceptance testing.)

Section III:3 System Design 113
NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications

3.1.1.5 Business Requirement(s)

3.1.1.6 Inputs

3.1.1.7 Interfaces

3.1.1.8 Security Considerations

3.1.1.9 Logic Flow

3.1.1.10 Outputs

3.1.1.11 Database Access

3.1.1.12 Common Elements Used

3.1.1.13 Module Review Process

3.1.1.14 Audit Tracking

3.1.1.15 Special Considerations

3.1.1.16 Unit Test Plan

Business Requirements provides a tie-back to the Business Requirements Document.

Inputs details all data sources, Consumer input, etc. that will provide data to the module.

Security Considerations identify how the security strategy will be implemented in the module.

Logic Flow details how the business rules will be implemented by module code.

Unit Test Plan details how the module will be tested, once developed.

Interfaces details how the Consumers will interact with the module’s interface components,
and how those components will behave in all circumstances.

Outputs details all data stores, displays, etc. created or modified as a result of the module’s
execution.

Database Access explains how the module will navigate the database(s) to obtain, update,
create or delete the data, and which data sources, tables, records, etc. will be used in the
process.

Common Elements Used lists all the common objects, stored procedures, etc. that will be
used by the module.

Module Review Process outlines what QA procedures will be used to review the module and
its test results.

Audit Tracking details how updates to data and access to or utilization of system components
will be recorded and tracked for auditing purposes.

Special Considerations allows compilation of all other Requirement, Design and/or
Construction considerations that the Application Developer should be cognizant of.

114 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications

Unit Test Case
Unit Test Case Number:
Unit Test Case Name:
Purpose of Test Case:
Unit Test Data:

Data Source A Value(s):
Data Source B Value(s):

Navigation:
Navigation Directions

Expected Results:
Narrative

Comments:
Additional Testing Consideration

Unit Test Results:
Tester:

Name
Date Time

Results:
Passed: ______ Failed: ______
Justification:

Unit Test Case Number allows quick reference to test case; should be based on module
identification.
Unit Test Case Name provides a brief description of the condition/scenario being tested.
Purpose of Test Case identifies those functions that the test is intended to validate.
Unit Test Data identifies data values (or conditions) that need to be set in order to conduct the
test case.
Navigation provides a sequence of activities that need to be performed to set up and execute
the test.
Expected Results provides a comprehensive description of how the module is expected to re-
act to the test case, and/or what data values (or conditions) are expected as a result of the test.
Comments provides additional considerations for the test (expected Fail conditions, etc.)
Unit Test Results allows the tester to record the results of the unit test.
Tester enters his/her Name, and Date and Time of the test.
Tester certifies the test as Passed or Failed, and provides a Justification for that certification.
In the event of a failure, and depending upon how defects are being captured and tracked, this
justification may be a description of the problem encountered, or may simply contain a refer-
ence to the defect log, where a detailed description of the error would be maintained.

3.1.2 Module A-2

3.2 Sub-System B

3.2.1 Module B-1
3.2.2 Module B-2

Section III:3 System Design 115
NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications

4.0 INTEGRATION TEST PLAN

Integration Test Plan details the activities to be performed in integration testing.

Sub-system modules are organized into Integration Packets to facilitate integration testing.
The same module (or a series of modules) can be included in different, smaller or larger,
Integration Packets depending on the aspects of the system being integrated and tested.

4.1 Integration Packet 1

Integration Test Case

Integration Test Case Number:

Integration Test Case Name:

Module List:

Purpose of Integration Test Case:

Integration Test Data:

Data Source A Value(s):

Data Source B Value(s):

Navigation:

Navigation Directions

Expected Results:

Narrative

Comments:

Additional Testing Consideration

Integration Test Results:

Tester:

Name:

Date: Time:

Results:

Passed: ______ Failed: ______

Justification:

Verifier:

Name:

Date: Time:

116 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications

Integration Test Case Number allows quick reference to test case; should be based on mod-
ule identification.
Integration Test Case Name/Purpose provide a brief description of the scenario being tested.
Module List identifies system modules included in the Packet
Integration Test Data identifies data values (or conditions) that need to be set in order to con-
duct the test case.
Navigation provides a sequence of activities that need to be performed to set up and execute
the test.
Expected Results provides a comprehensive description of how the Packet is expected to
react to the test case, and/or what data values (or conditions) are expected as a result of the
test.
Comments provides additional considerations for the test (expected Fail conditions, etc.)
Integration Test Results allows the tester to record the results of the test.
Tester enters his/her Name, and Date and Time of the test, certifies the test as Passed or
Failed, and provides a Justification for that certification. As with Unit testing, this justification
may contain descriptive text, or may refer to an entry in the project’s defect log.
Verifier verifies that the Integration Test was conducted as described, and produced reported
results.

4.2 Integration Packet 2

5.0 SYSTEM TEST PLAN

System Test Plan details the activities to be performed in integration and system testing.

Sub-systems and system modules are organized into System Test Packets to facilitate system
testing. The same packet, or the system as whole, may be tested numerous times to verify dif-
ferent aspects of its operation.

5.1 System Test Packet 1
System Test Case

System Test Case Number:
System Test Case Name:
Module List:
Purpose of System Test Case:
System Test Data:

Data Source A Value(s):
Data Source B Value(s):

Navigation:
Navigation Directions

Expected Results:
Narrative

Comments:
Additional Testing Consideration

Section III:3 System Design 117
NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications

System Test Results:
Tester:

Name:
Date: Time:

Results:
Passed: ______ Failed: ______
Justification:

Verifier:
Name:
Date: Time:

System Test Case Number allows quick reference to test case; should be based on module
identification.
System Test Case Name/Purpose provide a brief description of the scenario being tested.
Module List identifies system modules included in the Packet
System Test Data identifies data values (or conditions) that need to be set in order to conduct
the test case.
Navigation provides a sequence of activities that need to be performed to set up and execute
the test.
Expected Results provides a comprehensive description of how the Packet is expected to
react to the test case, and/or what data values (or conditions) are expected as a result of the
test.
Comments provides additional considerations for the test (expected Fail conditions, etc.)
System Test Results allows the tester to record the results of the test.
Tester enters his/her Name, and Date and Time of the test, certifies the test as Passed or
Failed, and provides a Justification for that certification. In the event of a failure, and depend-
ing upon how defects are being captured and tracked, this justification may be a description of
the problem encountered, or may simply contain a reference to the defect log, where a detailed
description of the error would be maintained.
Verifier verifies that the System Test was conducted as described, and produced reported
results.

5.2 System Test Packet 2

6.0 ACCEPTANCE TEST PLAN

Acceptance Test Plan details the activities to be performed in integration and system testing.

Modules, groups of modules and sub-systems are organized into Acceptance Test Packets to
facilitate Customer Representative testing of the system.

6.1 Acceptance Test Packet 1
Acceptance Test Case

Acceptance Test Case Number:
Acceptance Test Case Name:
Module List:
Purpose of Acceptance Test Case:

118 Section III:3 System Design

NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications

Acceptance Test Data Preparation:
Data Preparer:

Data Sources and Values:
Acceptance Case Description:

Business Rules, Requirements and Conditions being tested:
Navigation directions:

Expected Results:
Narrative

Comments:
Additional Testing Consideration

Acceptance Test Results:
Tester:

Name:
Date: Time:

Results:
Passed: ______ Failed: ______
Justification:

Defect Resolution:
Application Developer:
Resolved Date:

Re-Tester:
Name:
Date: Time:

Results:
Passed: ______ Failed: ______
Justification:

Approval:
Name:
Date: Time:

Acceptance Test Case Number allows quick reference to test case; should be based on mod-
ule identification.
Acceptance Test Case Name/Purpose provide a brief description of the condition/scenario
being tested.
Module List identifies system modules included in the Packet
Acceptance Test Data Preparation describes how the Data Preparer will prime Data Sources
with Values that will provide realistic and understandable test scenarios for Customer
Representatives.
Navigation Directions provide a guide for the Customer Representative testing the Packet on
a proper sequence of activities to set up and execute the test.
Expected Results provides a comprehensive description of how the Packet is expected to
react to the test case, and/or what data values (or conditions) are expected as a result of the
test.

Section III:3 System Design 119
NYS Project Management Guidebook

Figure 3-7 (Continued)

Technical Specifications

Comments provides additional considerations for the test (expected Fail conditions, etc.)
Acceptance Test Results allows the tester(s) to record the results of the test.
Tester
In case of a Defect, the Packet is passed to an Application Developer for Resolution; the
Date of resolution is recorded, and the Packet is passed back for further Acceptance Testing.
Re-Tested enters his/her Name, and Date and Time of the test, certifies the test as Passed or
Failed, and provides a Justification for that certification. In the event of a failure, and
depending upon how defects are being captured and tracked, this justification may be a
description of the problem encountered, or may simply contain a reference to the defect log,
where a detailed description of the error would be maintained.
A Customer Decision-Maker (or Representative) approves the test results by entering his/her
Name, Date and Time of the Approval.

6.2 Acceptance Test Packet 2

7.0 DEPLOYMENT AND TRANSITION PLANS

The Deployment and Transition Plans section outlines the activities to be performed during
System Implementation. The details identified in this plan form a subset of the overall Project
Implementation and Transition Plan, defined in the Project Planning phase of the Project
Management Lifecycle.

7.1 Consumer Training and Deployment

7.2 Data Preparation

7.3 Software Migration

7.4 Production Start-up

7.5 Production Verification

7.6 Performing Organization Training and Transition

Consumer Training and Deployment deals with training and preparing Consumers for system
deployment.
Data Preparation deals with plans for data conversion, data cleansing, and data migration in
preparation for system deployment.
Software Migration outlines an approach for migrating developed software to Production, and
making it available to Consumers.
Production Start-up considers all other (outside data preparation and software migration)
activities necessary to prepare and start up the System in Production.
Production Verification deals with all the tasks that need to be performed to make sure the
version of the System migrated to Production is functioning properly.
Performing Organization Training and Transition outlines plans for training and turning over
system support responsibilities to the Performing Organization.

8.0 OPERATIONAL CONSIDERATIONS

A high-level description of how the technical architecture supports and addresses the
Operational needs of the system is presented in this section. Items include load and update
procedures, report production and distribution, data archival and retrieval, backup and recovery,
periodic and on-demand procedures, incident reporting, Consumer support requirements,
enhancement request processing, etc.

Measurements of Success

The immediate measurement of success for System Design is
the acceptance of all deliverables by the Customer, while the
eventual measurement is whether or not the system can be
developed according to plan.

Meanwhile, the Project Manager can still assess how success-
fully the project is proceeding by utilizing the measurement cri-
teria outlined below. More than one “No” answer indicates a
serious risk to the eventual success of the project.

Figure 3-8

Process Measurements of Success Yes No

Prepare for System Do all team members have experience with (or
Design training on) the tools that will be used in this phase?

Is the team comfortable with the process defined for
managing the deliverable repository?

Define Technical Has the proposed architecture been reviewed by an
Architecture independent third-party subject matter expert?

Do your Customers understand the potential impact
that the proposed architecture may have on their
operations, and agree that the defined architecture
supports both their immediate and long-term needs?

Define System Have the technical and configuration management
Standards standards been reviewed and approved by an

agency’s SQA Administrator or equivalent?

Have standards been defined and accepted that
address the strategy for managing future releases
of the system?

Create Physical Were the Performing Organization’s data
Database administration policies and standards considered in

creating the database?

Was the database created using scripts from an
automated tool to ensure consistency, repeatability,
and maintainability of future builds of the database?

Has an independent third-party subject matter expert
reviewed the physical database design?

Prototype System Has the Customer been involved in defining which
Components aspects of the system would be prototyped and

reviewed?

120 Section III:3 System Design

NYS Project Management Guidebook

Process Measurements of Success Yes No

Prototype System Has Customer feedback been incorporated into the
Components prototype?
(Continued) Have proof of concept activities been performed for

all aspects of the system believed to pose the
greatest risk (i.e., those components of the system
that are new to the environment, that do not adhere
to existing standards, or that introduce architectures
not currently validated in the environment)?

Produce Technical Has a gap analysis been performed between the
Specifications system components identified in the Functional

Specification and the system modules defined in
the Tech Specs?

Have the Customers been involved throughout
System Design in the review of the Tech Specs to
ensure that they have both a sense of the progress
being made, as well as confidence in the final design?

Is the Customer satisfied that the solution not only
addresses the security requirements, but also adheres
to existing organizational practices?

Phase Risks / Ways to Avoid Pitfalls

PITFALL #1 – HOW DID BUILDING MY DREAM HOME TURN INTO
SUCH A NIGHTMARE, OR HOW COULD I POSSIBLY HAVE EXCEEDED
MY BUDGET BY THAT MUCH?

Everyone has a vision of a dream home, whether it is a cottage
in the Adirondacks, a villa on the shores of the mighty Hudson,
or a mansion that backs up to the 18th green at your favorite
country club.

Building that dream home, however, can quickly turn into a
nightmare if not approached correctly. The Project Team –
architects, contractors, electricians, interior designers, inspec-
tors, in addition to you and your loved ones – can quickly out-
number ants at most picnics. To complicate things even further,
decisions made at every phase of the building process set the
stage for the work that remains.

� The layout of your property may influence the style of
house that you choose and the location and number of
entrances

Section III:3 System Design 121
NYS Project Management Guidebook

� The style of the house that you are building determines
how many floors it will have and how it will be framed

� The design of each floor enables you to determine the
exact layout of the rooms and how to run the wiring and
plumbing

� How the rooms flow together lets you choose coordinated
color schemes and common decorating themes

� And on and on …

The one thing that pulls it all together – the key to putting the
“dream” in your dream home – is that clear, shared vision. Your
dream home’s worst enemies? Indecisiveness and impatience.

Indecisiveness, (or the “but it’s just a little change” syndrome),
results in your “vision” being more like a blur. Decisions made
early in the process establish the blueprint for your home, and
set the Project Team in motion. The foundation is poured, the
framing goes up, the plumbing is plumbed, etc. When after-the-
fact decisions are introduced (“You know, we’ve thought about
it, and we’d really like the kitchen moved three feet to the left.”)
there will be a ripple effect on the rest of the construction.

Impatience is that strong desire to see something happening,
even though your vision is still being formulated – to pour that
first load of cement, or to drive that first nail. This is analogous
to putting the cart in front of the horse, if for no other reason
than to convince yourself that there really is a cart and a horse.
This does provide the illusion of quick results, but also often
results with the wrong kind of cart, and an animal hooked up to
it that, at best, looks somewhat like a horse … maybe … from
a distance. Invariably, you’re going to have to go back and redo
some of what you had hoped was already behind you.

These factors combined can have the same effect on your budg-
et as fast food has on your cholesterol. In other words … it’s
gonna go up, and it’s gonna go up fast.

But how does this relate to building your new dream system?

Much like building a new home, building a new system requires
that the foundation upon which it is to be built be established,
“locked down”, and communicated as early in the project as
possible. That’s the whole purpose of Define Technical

122 Section III:3 System Design

NYS Project Management Guidebook

Architecture and Define System Standards, early in the
System Design phase. And just like with the house, changes to
the system architecture late in the project (indecisiveness)
and jumping into module design or System Construction ahead
of completing the architecture (impatience), can have a dra-
matic impact. That’s why it’s necessary to define your archi-
tecture and standards first, and to make sure they are as com-
plete and as accurate as possible.

PITFALL #2 – UMM …….. WHAT?!?

Marcelle Marceau, the famous French mime, made a career out
of mastering the unwritten and unspoken word. His ability to
represent ideas or concepts and even to tell complete stories
through only his actions entertained audiences around the
world. Fortunately for Mr. Marceau, there was very little
impact if his rendition of “Cooking a Gourmet Dinner” was mis-
takenly interpreted by an audience member as “Mailing My Shih
Tzu to Schenectady.”

The same obviously cannot be said for developing detailed
Technical Specifications. Misinterpreting the requirements of a
certain function, or the design of a specific module, can have
significant impact on your project. This is further complicated
due to the fact that these differences in interpretation are often
not uncovered until well into the testing phases of the project,
at which time the actions needed to correct the problems can
be enormous.

That is why, when producing Technical Specifications, the
appropriate level of detail is everything. Don’t assume that the
intended audience (your Application Developers) has the same
level of understanding and expertise as your Analysts and
Technical Leads have. For one thing, it is very likely that they
have not been intimately involved in the requirements gathering
or design activities. Therefore, they also do not have the same
level of familiarity with the Customer, Stakeholder, or
Consumer, or more specifically, with their business needs, as
do those Project Team members that have been interacting with
them regularly since the project started.

As a result, all of the information and details must be captured
and communicated in the Tech Specs. You cannot assume that
those individuals reading these specifications can correctly fill
in the gaps, or that they’ll even realize that there is a gap that
requires filling!

Section III:3 System Design 123
NYS Project Management Guidebook

So remember, when it comes to producing and validating your
Technical Specifications, it pays to spend the time capturing
the details up front, before you (and your Shih Tzu) find your
Developers saying, “Return to Sender.”

PITFALL #3 – HEY, BUDDY, CAN YOU SPARE SOME HARDWARE?

You’ve spent countless hours designing the best system ever
devised. You’ve checked and double-checked to ensure that
each and every requirement has been addressed, and that every
data item is accounted for (your CRUD matrix is the talk of the
town!). Not only that, but your team also managed to build the
system in less time than was originally estimated, and you’re
already thinking about how sweet it will be to park in the
Employee of the Month parking spot. All that remains is the
testing.

And that’s when the walls start to crumble. It seems that while
you convinced yourself that you had devised a clever testing
strategy, you were so focused on making sure that you could
validate the system functionality that you may have overlooked
one little detail … the hardware needed to support all of the
testing environments. And now that you’re neck deep in people
looking for results, you’ve got to explain why testing will be
delayed and why you’ve got to now find a way to obtain (trans-
lation – beg, borrow, steal, BUY?) the hardware to support inte-
gration testing. And user acceptance testing. And QA testing.
Suffice it to say, there goes the parking spot.

Of course, this could all have been avoided by looking at the full
testing picture. This includes not only defining how you plan to
confirm that the system performs to expectations, but also that
you’ve got the hardware, data, and all other resources needed
to execute the tests. The time to think about this is now, dur-
ing System Design.

124 Section III:3 System Design

NYS Project Management Guidebook

Frequently Asked Questions

When is prototyping complete?

There is no absolute answer to this question. Theoretically,
prototyping is complete when all Customer feedback has been
received, reviewed, and accommodated for in the design. More
realistically, the Project Manager will need to find a balance
between the benefits of yet one more iteration and the associ-
ated cost to the project’s budget and schedule. By clearly stat-
ing the expectations up front (i.e., the number of iterations
accommodated for in the Project Schedule), the stage will be
set to alter this approach up or down through the standard
change management process being deployed on this project.
Ultimately, the real question becomes, “Is the juice worth the
squeeze?” - or stated another way, “At what cost is your
Customer willing to pursue perfection?”

If you determine that the Customer environment in which you
are working has a strong preference for an iterative prototype
and design approach, you may want to consider choosing a
methodology that supports iterative development (such as
RAD). These methodologies allow for cycles of requirements
definition throughout the development process, and are most
typically used in rapidly changing Customer environments, or
on projects that require quick delivery. To be successful, these
approaches also are very dependent upon close Customer
interaction throughout the prototype revisions.

How can the Project Team determine that all security con-
cerns have been addressed?

Unfortunately, there is no shortcut available, and no substitute
for an exhaustive review of the system’s data elements, and the
management of security around each element. Creation and
review of a CRUD matrix, clearly delineating Consumers with
authority to Create, Read, Update, and Delete system data, is
one of the more traditional techniques used to ensure that the
full range of security needs has been addressed. By under-
standing the processes through which these operations are per-
formed, and mapping these processes to the Consumers
authorized to execute them, a high degree of confidence in the
security solution can be achieved.

Section III:3 System Design 125
NYS Project Management Guidebook

?

Shouldn’t definition of the technical architecture precede
business requirements gathering? Don’t I need to know
what flashy new technology I can promise my Customers?

You must be the one who bought a backhoe to put up a bird-
house! Just as it’s wise to have a good idea what the job entails
before buying tools and equipment, it makes sense to have a
firm grasp on business requirements before deciding on the
details of the technical architecture. Business needs should
drive the technology, not the other way around.

And as for those flashy promises… as the poet said, you’ll have
miles to go before you sleep when you have promises to keep.

Is there a software tool to produce technical specifica-
tions from the functional specifications? Isn’t there an
easier, automated way to come up with the system design?

Some day, you will be able to feed your business requirements
into a software tool and have it come up with the Tech Specs.
Some day, you will be able to just talk to your computer and
have it produce the whole system for you, bug free.

Until that day is here, though, the Project Managers, the
Business Analysts and the Technical Leads can remain gainful-
ly employed trying to translate Customer whims into some sort
of electronic reality.

Those who lived through the boom – and bust – of computer-
aided software engineering tools, understand the promise – and
the reality – of such concepts. Until computers learn to think,
that job belongs to the people, and the creative process of
designing a new system will rest with the humans on the
Project Team, regardless of what computer tools they use to
produce pretty deliverables.

What is the prototype? Is it a pilot? Proof of concept?
System model? Why is it where it is in the lifecycle?

You’re absolutely right, the word “prototype” is used to mean a
whole variety of things. In the context of the NYS System
Development Lifecycle, though, it serves as a low cost (and low
risk) technique of validating the technical design and verifying
that the business requirements are being correctly translated
into system components.

126 Section III:3 System Design

NYS Project Management Guidebook

The Functional Specification document has elements of a pro-
totype in it, inasmuch as it contains the printed mock-ups of
system interfaces that serve as a first “reality check” of the sys-
tem design. Then, after the technical architecture and system
standards are defined, a prototype of representative system
components is developed, using the development tools of
choice, if possible. Thus, the “look and feel” of the system is
presented to the Customers without a great deal of expense and
effort implementing the business rules.

It is where it is in the lifecycle because, generically speaking,
that’s the right place for it: after the requirements have been
finalized and the technical architecture has been defined, but
before a major effort has been expended detailing Technical
Specifications for every module (and certainly before any real
coding effort has occurred!)

How do I establish system standards if there are none?
Why do I need them anyway?

Well, there is that old story about the Tower of Babel that sort
of makes the point about why a common language (“standards”
in the system development parlance) is preferable.

As far as how to go about creating standards when there are
none (or worse yet, when the current IT landscape looks like
the Tower of Babel), start with “expert opinion”: ask competent
people, knowledgeable about the chosen technology, what they
would recommend (hopefully, some of them are on your team!).
Have them write it down, in as much detail as possible, cover-
ing at the very least naming conventions, programming stan-
dards, and configuration management. Keep refining and aug-
menting the standards as your team encounters situations not
covered by the existing ones.

Keep in mind that the ultimate purpose of the standards is not
just having them around but using them, so be strident in your
admonitions and vigilant in your QA procedures.

Why plan for data conversion and system deployment in
the System Design phase (since neither occurs until much
later in the process)?

Ah yes, the old school of “we’ll cross that bridge when we come
to it.” As Project Managers, we would rather go by the “meas-
ure twice, cut once” theory. As per the project management

Section III:3 System Design 127
NYS Project Management Guidebook

methodology (see Section I, Project Management Lifecycle),
planning activities should be complete in the Project Planning
phase (which maps to SDLC System Requirements Analysis and
System Design phases).

Look at it this way – every system development activity has a
chance of affecting other system development activities, and
affecting folks outside the Project Team. These effects may
range from slight to significant. Now, when would you rather
know about them – ahead of time, so you can plan, anticipate,
and prepare, or after the fact, so you can scramble, react, and
catch up?

What level of detail is appropriate for Technical
Specifications?

The theoretical answer is that you should be able to hand off
Technical Specifications to a group of developers who have the
requisite technical skills but know nothing about this particu-
lar system, and receive in return a product that closely match-
es user requirements.

In other words, the Technical Specifications should stand on
their own, providing all of the necessary information to the
developer. They should describe the business process in great
detail, enumerating ALL pertinent business rules. They should
describe the inputs and outputs precisely, providing detailed
layouts and specific locations. They should not only mention
the database records and elements involved, but also how they
should be accessed and updated. They should describe every
processing step in great detail, anticipating any question a
developer may ask. They should describe every possible user
action, and provide detailed instructions on how the system
should react to each. They should provide instructions on how
to test each module once it’s been developed, how to integrate
modules into sub-systems, and sub-systems into the system,
and how to test the success of each integration.

In the ideal world, upon receiving and reading the Technical
Spec, a developer should be able to start – and complete – the
assignment without any further questions.

128 Section III:3 System Design

NYS Project Management Guidebook

