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Application Security Testing
How to find software vulnerabilities before you ship 

or procure code
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 Why Care About Application Security?

 Quality vs Security

 Application Security Techniques

 Manual Code Reviews

 Static Application Security Testing

 Dynamic Application Security Testing

 How to Incorporate Application Security into Your 
Organization

Overview
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DHS goal: Secure the software supply chain

DHS funded Secure Decisions to develop innovative technologies to 
improve and expand security testing of software applications.  

About Code Dx, Inc.

Based in 

Northport & 

Clifton Park, 

NY

See http://securedecisions.com for more cybersecurity innovations.

Led to new open source and commercial solutions; formation of 
new company Code Dx, Inc. 

Co-organizer for OWASP Long Island chapter
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Developers of freely available community resources

Code-Pulse.com CWEvis.org

in

https://continuousassurance.org
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Why Care About Application Security?
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Data Breaches Impact

Annual global cost of cybercrime is > $400 b
Net Losses: Estimating the Global Cost of Cybercrime, Center for Strategic and International Studies, June 2014

350 million accounts impacted
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Verizon Data Breach Report 2015

Web App Attacks: A favorite 

method of organized crime

8

This year, organized crime 
became the most 
frequently seen threat 
actor for Web App Attacks.

Web Applications are used 
to perpetrate 31% of 
breaches into Financial 
Services
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Software flaws are at root of most cyber incidents

Bug Bounties

• Google pays “white hat” hackers up to 
$20k to find vulnerabilities in its Web 
browser, before attackers do

• Microsoft offers as much as $150k 

90% of security incidents result from 
exploits against defects in software

Build Security In Website, DHS
https://buildsecurityin.us-cert.gov/bsi/mission.html

“
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YOU’RE NOT AS SECURE AS YOU MAY THINK!
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Quality vs Security
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Confusing code

Performance issues

Concurrency issues

Memory leaks

Null pointer

Redundant & dead code

SQL Injection

Cross-site scripting (XSS)

Cross-site request forgery (CSRF)

Buffer overflows

Using hard coded passwords

Sensitive data exposure

Example Quality and Security Issues

Example Quality Issues

Example Security Issues
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Quality is Security

Quality and security are closely intertwined

2011 Firefox study found that 82% of vulnerable source files 
were also faulty files

Software Engineering Institute in 2014 study concluded that:

 Over half of security vulnerabilities are also quality defects

 There is a direct correlation between the number of quality 
defects in a system and the number of security vulnerabilities
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QUALITY

SECURITY

QUALITY CODE LEADS TO MORE SECURE CODE
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Application Security Testing Techniques
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Application Security Testing Techniques

 Manual code reviews

 Static Application Security Testing (SAST)

 Dynamic Application Security Testing (DAST)
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 Established practice for 
improved code quality

 Beneficial to both quality 
and security

 Useful to detect 
fundamental structural flaws

 Certain security issues can 
only be detected via manual 
reviews

Code Reviews
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Static Application Security Testing (SAST)

 Automated

 Statically scans source or binary files

 Detect potential vulnerabilities

 Potential vulnerabilities need manual verification

 Many SAST tools available, open source & commercial

 Dependency checking for known vulnerabilities
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SAST Workflow

1. Input selection, source and/or binary files

2. SAST tools scan input files

3. SAST tools present list of potential vulnerabilities

4. Manual potential vulnerability triage

5. Remediation of confirmed vulnerabilities
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Typical SAST result listing with filtering workflow
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Typical detailed view with source listing and remediation guidance
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Dynamic Application Security Testing (DAST) –

Application penetration testing

 Manual and/or Automated

 Dynamically scan application at runtime

 Attempt to penetrate an application by detecting and 
exploiting vulnerabilities

 Typically performed in the run up to releases

 Many DAST tools available, open source & commercial

OWASP ZAP
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DAST Workflow

1. Application staging

2. DAST tools manually/automatically tuned to identify the 
attack surface

3. DAST tools perform active probing for vulnerabilities

4. Identified vulnerabilities reported

5. Remediation of vulnerabilities
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Typical DAST scanning screen
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Typical detailed view with remediation guidance
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How to Incorporate Application Security 

into Your Organization
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Before you Test: SDLC

 Application security cannot be a final after-thought

 Incorporate security into all aspects of the SDLC

 Learn from the processes that are out there

 OpenSAMM, BSIMM, Microsoft Security DLC

Source: Microsoft Security Development Lifecycle

SAST + Code Reviews
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Test Early, Fix Early
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 Stakeholders and development teams need to see value in 
application security: Pay now or pay more later

 Integrate application security tools into the developers’ IDEs

 Many resources available to offer guidance

Before you Test: Educate
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Best practice: Use multiple static analysis tools and 

combine results

Different tools 
identify different 
problems… C

B
A

D

One tool on average 
detects 14% weaknesses

Kris Britton and Chuck Willis, “Sticking to the Facts: Scientific 
Study of Static Analysis Tools”, Sept 2011: 
http://vimeo.com/32421617

Paul E. Black, “Evaluating Static Analysis Tools”, 8 July 2009: http://samate.nist.gov/docs/eval_SA_tools_MIT_LL_July_2009.ppt

2 tools
3 tools 4 tools

All 5 tools

Non-overlap: Hits reported by one tool and no others (84%)

Overlap: Hits reported by more than one tool (16%)
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<Vulnerability>

<ClassInfo>

<ClassID>FE4EADF2-7055-4C36-863E-5A01C4A0E1A4</ClassID>

<Kingdom>Encapsulation</Kingdom>

<Type>System Information Leak</Type>

<AnalyzerName>semantic</AnalyzerName>

<DefaultSeverity>3.0</DefaultSeverity>

</ClassInfo>

<InstanceInfo>

<InstanceID>0010C1C949B6B1146790E9BA51866F0D</InstanceID>

<InstanceSeverity>3.0</InstanceSeverity>

<Confidence>5.0</Confidence>

</InstanceInfo>

<AnalysisInfo>

<Unified>

<Context>

<Function name="handleRequest" namespace="org.owasp.webgoat.lessons.CrossSiteScripting" enclosingClass="CrossSiteScripting"/>

<FunctionDeclarationSourceLocation path="java/org/owasp/webgoat/lessons/CrossSiteScripting/CrossSiteScripting.java" line="234" lineEnd="296" colStart="2" colEnd="0"/>

</Context>

<ReplacementDefinitions>

<BugInstance type="NP_NULL_ON_SOME_PATH" priority="1" abbrev="NP" category="CORRECTNESS">

<Class classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator">

<SourceLine classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" start="58" end="670" sourcefile="LinkSetAggregator.java" 

sourcepath="com/securedecisions/tva/model/linksettransform/LinkSetAggregator.java"/>

</Class>

<Method classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" name="createFromExploit" 

signature="(Lcom/securedecisions/tva/model/xml/ag/LinkDocument$Link;Lcom/securedecisions/tva/model/xml/pdag/ProtectionDomainDocument$ProtectionDomain;Z)Lcom/securedecisions/tva/m

odel/xml/pdag/ExploitDocument$Exploit;" isStatic="false">

<SourceLine classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" start="540" end="563" startBytecode="0" endBytecode="479" 

sourcefile="LinkSetAggregator.java" sourcepath="com/securedecisions/tva/model/linksettransform/LinkSetAggregator.java"/>

</Method>

<LocalVariable name="machine" register="5" pc="124" role="LOCAL_VARIABLE_VALUE_OF"/>

<SourceLine classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" start="550" end="550" startBytecode="125" endBytecode="125" 

sourcefile="LinkSetAggregator.java" sourcepath="com/securedecisions/tva/model/linksettransform/LinkSetAggregator.java" role="SOURCE_LINE_DEREF"/>

<SourceLine classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" start="549" end="549" startBytecode="85" endBytecode="85" 

sourcefile="LinkSetAggregator.java" sourcepath="com/securedecisions/tva/model/linksettransform/LinkSetAggregator.java" role="SOURCE_LINE_KNOWN_NULL"/>

</BugInstance>

ndleRequest" namespace="org.owasp.webgoat.lessons.CrossSiteScripting" enclosingClass="CrossSiteScripting"/>

working with different tool vendors is a confusing

and challenging and time-consuming process:

the engines work differently, which is good since they catch different

types of problems…
Jim Bird, Building Real Software

http://swreflections.blogspot.com/2009_04_01_archive.html

Tool A Tool B Tool C Tool D

Fortify Output

FindBugs Output

Use software vulnerability management 

system to combine/normalize multiple results
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Best practice: Tune DAST pen testing tools to 

maximize code coverage

1st scan 2nd scan

3rd scan

Tuning DAST tools improves 
amount of code covered when 
penetration testing applications

Code-Pulse.com

Code coverage illustration prepared 
using OWASP Code Pulse
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 Adopt all three techniques in limited doses initially

 Manual

 Static Application Security Testing (SAST)

 Dynamic Application Security Testing (DAST)

 Use a vulnerability management system to combine and 
normalize results of different techniques

 Examples: Code Dx, Thread Fix, Risk I/O

 Don’t get overwhelmed, focus on a subset of the initial 
findings – Example: Filter weaknesses to focus only on OWASP 
Top Ten ( https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013 )

 Integrate the tooling into your SDLC

Recommendations

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013
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