
June 2nd 20152015 NYS Cyber Security Conference 1https://codedx.com

Anita D’Amico, Ph.D.

Hassan Radwan

Application Security Testing
How to find software vulnerabilities before you ship

or procure code

June 2nd 20152015 NYS Cyber Security Conference 2https://codedx.com

 Why Care About Application Security?

 Quality vs Security

 Application Security Techniques

 Manual Code Reviews

 Static Application Security Testing

 Dynamic Application Security Testing

 How to Incorporate Application Security into Your
Organization

Overview

June 2nd 20152015 NYS Cyber Security Conference 3https://codedx.com

DHS goal: Secure the software supply chain

DHS funded Secure Decisions to develop innovative technologies to
improve and expand security testing of software applications.

About Code Dx, Inc.

Based in

Northport &

Clifton Park,

NY

See http://securedecisions.com for more cybersecurity innovations.

Led to new open source and commercial solutions; formation of
new company Code Dx, Inc.

Co-organizer for OWASP Long Island chapter

June 2nd 20152015 NYS Cyber Security Conference 5https://codedx.com

Developers of freely available community resources

Code-Pulse.com CWEvis.org

in

https://continuousassurance.org

June 2nd 20152015 NYS Cyber Security Conference 6https://codedx.com

Why Care About Application Security?

June 2nd 20152015 NYS Cyber Security Conference 7https://codedx.com

Data Breaches Impact

Annual global cost of cybercrime is > $400 b
Net Losses: Estimating the Global Cost of Cybercrime, Center for Strategic and International Studies, June 2014

350 million accounts impacted

June 2nd 20152015 NYS Cyber Security Conference 8https://codedx.com

Verizon Data Breach Report 2015

Web App Attacks: A favorite

method of organized crime

8

This year, organized crime
became the most
frequently seen threat
actor for Web App Attacks.

Web Applications are used
to perpetrate 31% of
breaches into Financial
Services

June 2nd 20152015 NYS Cyber Security Conference 9https://codedx.com

Software flaws are at root of most cyber incidents

Bug Bounties

• Google pays “white hat” hackers up to
$20k to find vulnerabilities in its Web
browser, before attackers do

• Microsoft offers as much as $150k

90% of security incidents result from
exploits against defects in software

Build Security In Website, DHS
https://buildsecurityin.us-cert.gov/bsi/mission.html

“

June 2nd 20152015 NYS Cyber Security Conference 11https://codedx.com

YOU’RE NOT AS SECURE AS YOU MAY THINK!

June 2nd 20152015 NYS Cyber Security Conference 12https://codedx.com

Quality vs Security

June 2nd 20152015 NYS Cyber Security Conference 13https://codedx.com

Confusing code

Performance issues

Concurrency issues

Memory leaks

Null pointer

Redundant & dead code

SQL Injection

Cross-site scripting (XSS)

Cross-site request forgery (CSRF)

Buffer overflows

Using hard coded passwords

Sensitive data exposure

Example Quality and Security Issues

Example Quality Issues

Example Security Issues

June 2nd 20152015 NYS Cyber Security Conference 14https://codedx.com

Quality is Security

Quality and security are closely intertwined

2011 Firefox study found that 82% of vulnerable source files
were also faulty files

Software Engineering Institute in 2014 study concluded that:

 Over half of security vulnerabilities are also quality defects

 There is a direct correlation between the number of quality
defects in a system and the number of security vulnerabilities

June 2nd 20152015 NYS Cyber Security Conference 15https://codedx.com

QUALITY

SECURITY

QUALITY CODE LEADS TO MORE SECURE CODE

June 2nd 20152015 NYS Cyber Security Conference 16https://codedx.com

Application Security Testing Techniques

June 2nd 20152015 NYS Cyber Security Conference 17https://codedx.com

Application Security Testing Techniques

 Manual code reviews

 Static Application Security Testing (SAST)

 Dynamic Application Security Testing (DAST)

June 2nd 20152015 NYS Cyber Security Conference 18https://codedx.com

 Established practice for
improved code quality

 Beneficial to both quality
and security

 Useful to detect
fundamental structural flaws

 Certain security issues can
only be detected via manual
reviews

Code Reviews

June 2nd 20152015 NYS Cyber Security Conference 19https://codedx.com

Static Application Security Testing (SAST)

 Automated

 Statically scans source or binary files

 Detect potential vulnerabilities

 Potential vulnerabilities need manual verification

 Many SAST tools available, open source & commercial

 Dependency checking for known vulnerabilities

June 2nd 20152015 NYS Cyber Security Conference 20https://codedx.com

SAST Workflow

1. Input selection, source and/or binary files

2. SAST tools scan input files

3. SAST tools present list of potential vulnerabilities

4. Manual potential vulnerability triage

5. Remediation of confirmed vulnerabilities

June 2nd 20152015 NYS Cyber Security Conference 21https://codedx.com

Typical SAST result listing with filtering workflow

June 2nd 20152015 NYS Cyber Security Conference 22https://codedx.com

Typical detailed view with source listing and remediation guidance

June 2nd 20152015 NYS Cyber Security Conference 23https://codedx.com

Dynamic Application Security Testing (DAST) –

Application penetration testing

 Manual and/or Automated

 Dynamically scan application at runtime

 Attempt to penetrate an application by detecting and
exploiting vulnerabilities

 Typically performed in the run up to releases

 Many DAST tools available, open source & commercial

OWASP ZAP

June 2nd 20152015 NYS Cyber Security Conference 24https://codedx.com

DAST Workflow

1. Application staging

2. DAST tools manually/automatically tuned to identify the
attack surface

3. DAST tools perform active probing for vulnerabilities

4. Identified vulnerabilities reported

5. Remediation of vulnerabilities

June 2nd 20152015 NYS Cyber Security Conference 25https://codedx.com

Typical DAST scanning screen

June 2nd 20152015 NYS Cyber Security Conference 26https://codedx.com

Typical detailed view with remediation guidance

June 2nd 20152015 NYS Cyber Security Conference 27https://codedx.com

How to Incorporate Application Security

into Your Organization

June 2nd 20152015 NYS Cyber Security Conference 28https://codedx.com

Before you Test: SDLC

 Application security cannot be a final after-thought

 Incorporate security into all aspects of the SDLC

 Learn from the processes that are out there

 OpenSAMM, BSIMM, Microsoft Security DLC

Source: Microsoft Security Development Lifecycle

SAST + Code Reviews

June 2nd 20152015 NYS Cyber Security Conference 29https://codedx.com

Test Early, Fix Early

June 2nd 20152015 NYS Cyber Security Conference 30https://codedx.com

 Stakeholders and development teams need to see value in
application security: Pay now or pay more later

 Integrate application security tools into the developers’ IDEs

 Many resources available to offer guidance

Before you Test: Educate

June 2nd 20152015 NYS Cyber Security Conference 31https://codedx.com

Best practice: Use multiple static analysis tools and

combine results

Different tools
identify different
problems… C

B
A

D

One tool on average
detects 14% weaknesses

Kris Britton and Chuck Willis, “Sticking to the Facts: Scientific
Study of Static Analysis Tools”, Sept 2011:
http://vimeo.com/32421617

Paul E. Black, “Evaluating Static Analysis Tools”, 8 July 2009: http://samate.nist.gov/docs/eval_SA_tools_MIT_LL_July_2009.ppt

2 tools
3 tools 4 tools

All 5 tools

Non-overlap: Hits reported by one tool and no others (84%)

Overlap: Hits reported by more than one tool (16%)

June 2nd 20152015 NYS Cyber Security Conference 32https://codedx.com

<Vulnerability>

<ClassInfo>

<ClassID>FE4EADF2-7055-4C36-863E-5A01C4A0E1A4</ClassID>

<Kingdom>Encapsulation</Kingdom>

<Type>System Information Leak</Type>

<AnalyzerName>semantic</AnalyzerName>

<DefaultSeverity>3.0</DefaultSeverity>

</ClassInfo>

<InstanceInfo>

<InstanceID>0010C1C949B6B1146790E9BA51866F0D</InstanceID>

<InstanceSeverity>3.0</InstanceSeverity>

<Confidence>5.0</Confidence>

</InstanceInfo>

<AnalysisInfo>

<Unified>

<Context>

<Function name="handleRequest" namespace="org.owasp.webgoat.lessons.CrossSiteScripting" enclosingClass="CrossSiteScripting"/>

<FunctionDeclarationSourceLocation path="java/org/owasp/webgoat/lessons/CrossSiteScripting/CrossSiteScripting.java" line="234" lineEnd="296" colStart="2" colEnd="0"/>

</Context>

<ReplacementDefinitions>

<BugInstance type="NP_NULL_ON_SOME_PATH" priority="1" abbrev="NP" category="CORRECTNESS">

<Class classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator">

<SourceLine classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" start="58" end="670" sourcefile="LinkSetAggregator.java"

sourcepath="com/securedecisions/tva/model/linksettransform/LinkSetAggregator.java"/>

</Class>

<Method classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" name="createFromExploit"

signature="(Lcom/securedecisions/tva/model/xml/ag/LinkDocument$Link;Lcom/securedecisions/tva/model/xml/pdag/ProtectionDomainDocument$ProtectionDomain;Z)Lcom/securedecisions/tva/m

odel/xml/pdag/ExploitDocument$Exploit;" isStatic="false">

<SourceLine classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" start="540" end="563" startBytecode="0" endBytecode="479"

sourcefile="LinkSetAggregator.java" sourcepath="com/securedecisions/tva/model/linksettransform/LinkSetAggregator.java"/>

</Method>

<LocalVariable name="machine" register="5" pc="124" role="LOCAL_VARIABLE_VALUE_OF"/>

<SourceLine classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" start="550" end="550" startBytecode="125" endBytecode="125"

sourcefile="LinkSetAggregator.java" sourcepath="com/securedecisions/tva/model/linksettransform/LinkSetAggregator.java" role="SOURCE_LINE_DEREF"/>

<SourceLine classname="com.securedecisions.tva.model.linksettransform.LinkSetAggregator" start="549" end="549" startBytecode="85" endBytecode="85"

sourcefile="LinkSetAggregator.java" sourcepath="com/securedecisions/tva/model/linksettransform/LinkSetAggregator.java" role="SOURCE_LINE_KNOWN_NULL"/>

</BugInstance>

ndleRequest" namespace="org.owasp.webgoat.lessons.CrossSiteScripting" enclosingClass="CrossSiteScripting"/>

working with different tool vendors is a confusing

and challenging and time-consuming process:

the engines work differently, which is good since they catch different

types of problems…
Jim Bird, Building Real Software

http://swreflections.blogspot.com/2009_04_01_archive.html

Tool A Tool B Tool C Tool D

Fortify Output

FindBugs Output

Use software vulnerability management

system to combine/normalize multiple results

June 2nd 20152015 NYS Cyber Security Conference 33https://codedx.com

Best practice: Tune DAST pen testing tools to

maximize code coverage

1st scan 2nd scan

3rd scan

Tuning DAST tools improves
amount of code covered when
penetration testing applications

Code-Pulse.com

Code coverage illustration prepared
using OWASP Code Pulse

June 2nd 20152015 NYS Cyber Security Conference 34https://codedx.com

 Adopt all three techniques in limited doses initially

 Manual

 Static Application Security Testing (SAST)

 Dynamic Application Security Testing (DAST)

 Use a vulnerability management system to combine and
normalize results of different techniques

 Examples: Code Dx, Thread Fix, Risk I/O

 Don’t get overwhelmed, focus on a subset of the initial
findings – Example: Filter weaknesses to focus only on OWASP
Top Ten (https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013)

 Integrate the tooling into your SDLC

Recommendations

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013

June 2nd 20152015 NYS Cyber Security Conference 35https://codedx.com

Hassan Radwan

hassan.radwan@codedx.com

@leRadwan

Anita D’Amico

anita.damico@codedx.com

@AnitaDamico

mailto:ken.prole@codedx.com
mailto:tomb@proactiverisk.com

