
Next Generation
Cloud-enabled Architectures

2016 New York State Cyber Security
Conference

Michael Corley

Sean Bird

Quanterion Solutions Inc. (QSI)

June 8th 2016

Overview

1. What is Cloud?
 Deployment Types: Public, Private, Hybrid
 Traditional Service Models: IaaS, PaaS, SaaS
 Well-known Providers

2. Virtualization – The heart of Infrastructure as a
Service (IaaS)
 Flavors of virtualization

o Challenges and Limitations
 Hypervisors and Virtualization

 OpenStack

3. The Next Generation Cloud
 Unikernels
 Containers

 Docker
 Micro-services Orchestration

4. Tools of the Cloud
 Management and Administration
 Orchestration
 Security

5. QSI Cloud Experimentation

6. Questions and Discussion

What is Cloud?

 An adoption of Service Oriented Architecture (SOA) principles used to
provide and manage computing resources through integrated service
layers.

 The Traditional Cloud Deployment models

• Public Cloud
• Computing resources made available to the public (multiple organizations),

by a 3rd party provider over the Internet (on-demand)

• Security Constraints
• Multi-tenant
• Limited Control

• Can’t access the hardware, affect performance/storage location,
etc.

• Difficult or impossible to achieve compliance requirements
(PCI/SOX)

What is Cloud? Cont.
 Private Cloud
 Computing resources available to a single organization
 Dedicated Hardware (single-tenant environment)
 Security Constraints
 Better Control
Dedicated Resources (on-premises),
 Performance Customization, Custom remote/local access

 Security: Easier to achieve compliance requirements (PCI/SOX)

 Goals
• Consumer

o Cost Effectiveness, scalability, availability, reliability, etc.
o Provider

o Make Profits!

Well Known Providers

 There are many…

• Amazon EC2/AWS

• Google Cloud Platform

• Microsoft Azure

• Rackspace OpenStack (leading open source)…

• …

Traditional Cloud Service Models

 Traditionally an integrated service stack

• IaaS (Infrastructure as a service)

o Abstraction/management service layer over physical
infrastructure. Enabled through multilevel
virtualization.

• PaaS (Platform as a service)

o Abstraction/management service layer over the of
execution environment. Typically provides a tailored
operating system, with development tools, and
applications

• SaaS (System as Service)

o Abstraction/management service layer over the
infrastructure and the platform. End users gain access
tailored to fully managed applications and services.

https://en.wikipedia.org/wiki/Cloud_computing#/
media/File:Cloud_computing_layers.png

The Heart of IaaS – Virtualization

• IaaS is achieved with Virtualization (traditionally, virtual machines)

• Hardware Virtualization

o Full Virtualization

• Simulation to allows guest operating systems and software to run
unmodified.

o Para-virtualization

• A software interface that approximates the underlying hardware. VM guest
is modified to use “hooks” provided the interface to communicate directly
with the host to improve performance

o Hardware-assisted virtualization

• Support for virtualization in hardware to improve performance

Virtualization – Hypervisors

 Hypervisor (VMM) – software that manages VMs

• Type-1 (Bare metal)

o Allow VM guests run directly on the hardware

• Citrix XenServer, Microsoft Hyper-V, VMware ESX/ESXi

• Type-2 (Hosted)

o VM guests run atop a host operating system

• VMware Workstation, VMware Player, VirtualBox and QEMU

• KVM (kernel virtual machine) turns Linux OS into a hypervisor

OpenStack

 Leading open source Cloud solution: Rackspace/NASA (2010)

• Interrelated projects that control pools of processing, storage, and networking
resources throughout a data center—which users manage through a web-based
dashboard, command-line tools, or a RESTful API [1]

o Nova, Glance, Swift, Horizon, Keystone, Neuron, Cinder

• Widely adopted and supported by more than 500 companies

o AT&T, AMD, Avaya, Canonical, Cisco, Citrix, Dell, Dreamhost, EMC, Ericsson,
Fujitsu, Go Daddy, Hewlett-Packard, Huawei, IBM, Intel, Internap, Juniper
Networks, Mellanox, Mirantis, NEC, NetApp, Nexenta, Oracle, PLUMgrid, Pure
Storage, Qosmos, Red Hat, SolidFire, SUSE Linux, VMware, VMTurbo…

Source: https://en.wikipedia.org/wiki/OpenStack

OpenStack Hypervisor Model

https://platform9.com/blog/guide-to-understanding-openstack-esxi/

• libvirt
• Is an open source API, daemon, and

management tool for managing
platform virtualization

• Widely used in the orchestration layer
of hypervisors in the development of
a cloud-based solution

Source: https://en.wikipedia.org/wiki/Libvirt

The Next Steps for Cloud…
1. Operating-System-level virtualization!

• Process isolation achieved in the OS kernel instead of VM

o “Containers”, think BSD jails (chroot), LXC, Trusted Zones (Solaris)

• Docker - a full ecosystem around Containers

2. Micro-services concept!

• Containers versus Unikernels

o Unikernel – Specialized (single purpose) OS including ONLY the dependencies
of necessary to execute an application

• Rumprun, HalVM, ClickOS, MirageOS

3. Challenges/Risks?

 Orchestration (Management) and Security is very different!

What’s a “Container”?
 “Containers” – conceptually similar to VMs, but focus is shifted to the application!

• Share the Host OS: (no hypervisor, no guest OS), LXC, LibContainer, Etc/

• Uses the native system call interface

• In Linux, process Isolation, resource control is achieved through kernel namespaces
and cgroups (control groups)

o Applications run in isolation, but run directly on the Host OS (think BSD jails)

o Chief advantage?

• More efficient, and flexible, leading to cost effectiveness

o Risks/Challenges?

• Administration: (control and security is more complex)

• Abstraction is wonderful, but can difficult to troubleshoot when things
go wrong

• IT staff and system developers need to adopt new concepts, and think
differently about the approach to DevOps

Container Concept

Docker
• Leading (service-oriented) “Container” ecosystem for Linux

o Applications run in containers, built from read only images, and managed in
“Git-like” registries.

• Public or private: www.dockerhub.com is the official image registry

• Official, public, and private repositories

• Application and dependencies managed in a service stack (layered images)

• Only concern and dependencies of the application

• Each application represents a separate layer

• Only pull the layers missing or changed

• Greatly simplifies application

distribution and deployment!

• Docker Cloud: IaaS Services based on containers

• CaaS (Containers as a Service)

http://www.dockerhub.com/

OpenStack (Nova) “Container” Hypervisor
Orchestration: (libVirt and Docker)

Source: https://wiki.openstack.org/wiki/Docker

Unikernels: Advantages

 Specialized, single-address-space (single purpose) machine images
constructed by using library operating systems

• Compile high-level language code directly into a specialized
machine image

o Advantages: No general purpose OS, specialized
code/image needed for the application

• Reduced code size and resource footprint

• Performance optimization, and fast boot times

• shrink the attack surface, and better security

• Transient micro-services concept

• Run directly on a hypervisor, container, or bare-metal
hardware

 Open source work on Unikernels:

o Rumprun, Clive, HaLVM, MirageOS, IncludeOS

http://unikernel.org/

Unikernels: Risks and Challenges
 Security

• micro-services based on unikernels are transient, and
minimize code to reduce attack surface area, however…

 Some unikernels run in privileged mode: (ring 0)

 No user/kernel boundary as with traditional OS

 May rely on the hypervisor for multi-tenacy

 A good choice might be to run unikernels in
“Containers”*

*http://www.linuxjournal.com/content/unikernels-docker-and-why-you-should-care

Unikernels: Risks and Challenges
 Administration and management is difficult!

1. Transience (“Hello?? Are you alive?)

• System instance exists only long enough to service a
request!

• Affects current administration practices/ policy
implementation.

• e.g. patch the webserver! But
wait…webserver only exists long enough to
service a single request!!

• Need for Orchestration!!!

• Lots of approaches for provisioning the
appropriate Orchestration/management
layers.

• Challenge?

• Visibility! Higher layers can’t see
problems at lower layers

The Toolbox

• Amazon ECS

• Azure Container
Service

• Diego

• CoreOS Fleet

• Docker Swarm

• Google Container
Engine

• Kubernetes

• Mesospehere

• Nomad

• Universal Control
Plane

• Kitematic

• Weave

• Powerstrip

• Flocker

• Helios

• Rkt

• LXD

• Mesos

• Deis

• Osv

• OpenStack

• Marathon

• Shipyard

• GCE

• DNT

• Libnetwork

• wagl

Many disparate tools and approaches for the achieving the management
and control required for containers and micro-service based applications to
operate reliably in Cloud deployments.

Tools – The Legos of the Cloud

Mike Metral https://getcarina.com/docs/best-practices/container-technologies-orchestration-clusters/

Container Engines

 Docker (from Docker)

• Most widely used

 Rocket (from CoreOS)

• Aimed to be “more secure” – Signed images, User/root separation

• Uses existing init systems

 LXD (From Canonical)

• REST API access

• More “VM Like” - OS container vs Application container

o Docker container hosts

Orchestration
Main goal: To provide automated container management as well as guarantees for multi-
container services and container engines.

 Marathon with Apache Mesosphere(Scheduler) and DC/OS

• Multiple physical node scaling (treated as one machine)

 Kubernetes (Google Inc.)

• Large scale service oriented design

• “Self-Healing” services and Load balancing

 Swarm (Docker)

• Standard basic clustering tool

• Native Docker API for third party tool integration

https://docs.mesosphere.com/overview/
https://github.com/coreos/fleet/blob/master/Documentation/fleet-k8s-compared.md

https://docs.mesosphere.com/overview/
https://github.com/coreos/fleet/blob/master/Documentation/fleet-k8s-compared.md

Rancher/RancherOS

 Host-Cluster Management

 “Service” Management

• Orchestration inside orchestration

• Rancher Cattle, Docker Swarm, Kubernetes, Apache Mesos

 Security Management

• Access Control

o Active Dir, OpenLDAP, GitHub, Rancher local

• Certificate management

 Log Management

 Registry Management

Security
 Inherited risks with chroot

• Secondary chroots back into main filesystem

• Privilege escalations (breaking out of jail)

o Docker Daemon runs as root

o Spawning processes with root privileges from within chroot “jail”

• Local network access

• Arbitrary code execution

 Linux capabilities

• Allow granular specification of user abilities

o Example: use of CAP_NET_BIND_SERVICE to bind to TCP port 80

• Containers <= half of root capabilities

• Bound to application needs

https://access.redhat.com/blogs/766093/posts/1975883
https://en.wikipedia.org/wiki/Chroot#Limitations
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf

https://access.redhat.com/blogs/766093/posts/1975883
https://en.wikipedia.org/wiki/Chroot%23Limitations
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf

Security Continued

 Uses Linux namespaces and cgroups to mandate resource constraints

• Docker creates a set of namespaces for each container, isolating it from all the other running applications

• Uses cgroups to limit resource consumption/access

 Container image validation

• Images decompress as root process

• No current security check of official/non-official images by Dockers (as of yet)

https://access.redhat.com/blogs/766093/posts/1975883
https://en.wikipedia.org/wiki/Chroot#Limitations
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf

https://access.redhat.com/blogs/766093/posts/1975883
https://en.wikipedia.org/wiki/Chroot%23Limitations
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf

Experimentation with Containers (QSI)

Rancher vs Rancher OS

Linux System Kernel

User
Cont
ainer

s

System Docker Engine

User Docker Engine

Rancher
Manager User

Cont
ainer

s

User
Cont
ainer

s

User
Cont
ainer

s

User
Cont
ainer

s

User
Cont
ainer

s

System
Container

System
Container

System
Container

Physical Machine 2

Xen Hypervisor

Linux Virtual Machine

Docker Engine

Rancher
Manager

Elast
ic

Elast
ic

Elast
ic

Elast
ic

Elast
ic

Elast
ic

Elast
ic

Elast
ic

Elast
ic

Container Environment

Physical Machine 1

Rancher Orchestration (Elasticsearch)

Xen Hypervisor

Linux Virtual Machine

Docker Engine

Rancher
Manager

Container Environment

Physical Machine 1

Xen Hypervisor

Linux Virtual Machine

Docker Engine

Rancher
Manager

Container Environment

Physical Machine 2

Managed Rancher Network

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasti
c

Elasticsearch Cluster

Hardware

Xen (Type-1) Hypervisor
Physical Location #1

Hardware

Xen (Type-1) Hypervisor
(Physical Location #2

E E EE E

E E EE E

E E EE E

E E EE E

E E EE E

E E EE E

E E EE E

E E EE E

EE E EE

EE E EE

Xen Center (Resource Pool Interface)

Rancher
(Orchestration / Control Point)

Overlay Network

Linux VM Linux VM Linux VM Linux VM Linux VM DDDDD

D -- Docker daemon

E -- Elasticsearch instance QSI Cloud Experiments

VM_NET (eth0)

Virtual Machine (VM) Node: Mint 17.1

X

X
tap
0

X NIC (ethO)

X X X X X X X XX
bridge0

Container 1

Container 9

Container 5Container 4Container 3Container 2

Container 6 Container 7 Container 8

Physical
interface

Ubuntu 14.04
base image

Base image: Ubuntu 14.04

Layer 1: Qemu

Layer 2: Windows 7
Windows

image Base image: Ubuntu 14.04

Layer 1: Firebox Firefox
image

Virtualization Inception

X
Container 1

X
X

eth0 tap0

VM_NET (eth0)

X X
X

eth0 tap0

br0

QEMU QEMU

Hardware Emulation (x86 Intel) X

Container 2

X

Virtual Machine (VM) Host

X

X

X

br0

tap0

br0 X
tap1

E1000 NIC NIC

XNIC (eth0)

qemu-system-x86_64 -m 8192 -vnc :2 –net
nic,vlan=0,macaddr=00:80:7F:31:41:72,model=e1000 -net
tap,vlan=0,ifname=tap0,script=/etc/qemu-ifup -usbdevice tablet
[windows-image.qcow2] | [android-image.qcow2]

Hardware Emulation (x86 Intel)

Hypervisor

X
Container 1

X
X

eth0 tap0

VM_NET (eth0)

X X
X

eth0 tap0

br0

Container 3

Virtual Machine (VM) Host

X

X

X

br0

tap0

br0
Xtap1

XNIC (eth0)

X tap0X
X

eth0

br0

X

Container 2

Applications as a Stack of Layers

XenServer Hypervisor

Linux Virtual Machine

Docker Engine

Base Image: Bins/Libs
/Dependencies

QEMU (Bin)

Windows OS Guest

Image
Layers

QEMU: Machine Hardware
Configuration 1

Mac OS Guest

QEMU: Machine Hardware
Configuration 2

• Update respective layers to
extend new machine
hardware and Operating
System type

• Running container instance:
build from image

• Shares host OS with
other containers

Thank You!
Questions and Discussion?

	�Next Generation�Cloud-enabled Architectures��2016 New York State Cyber Security Conference�
	Overview
	What is Cloud?
	What is Cloud? Cont.
	Well Known Providers
	Traditional Cloud Service Models
	The Heart of IaaS – Virtualization
	Virtualization – Hypervisors
	OpenStack
	OpenStack Hypervisor Model
	The Next Steps for Cloud…
	What’s a “Container”?
	Slide Number 13
	Docker
	OpenStack (Nova) “Container” Hypervisor Orchestration: (libVirt and Docker)
	Unikernels: Advantages
	Unikernels: Risks and Challenges
	Unikernels: Risks and Challenges
	The Toolbox
	Tools – The Legos of the Cloud
	Container Engines
	Orchestration
	Rancher/RancherOS
	Slide Number 24
	Security
	Security Continued
	Experimentation with Containers (QSI)
	Rancher vs Rancher OS
	Rancher Orchestration (Elasticsearch)
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Virtualization Inception
	Slide Number 35
	Applications as a Stack of Layers
	Slide Number 37
	Thank You!

