Next Generation
Cloud-enabled Architectures

2016 New York State Cyber Security
Conference

Michael Corley
Sean Bird
Quanterion Solutions Inc. (QSI)

June 8t 2016

GK‘ Cyber Security & Information Systems
Jnﬁ:-rmuhun Anu.l'ysrs Center

Overview

What is Cloud? /. Tools of the Cloud

® Deployment Types: Public, Private, Hybrid " Management and Administration
® Traditional Service Models: 1aaS, PaaS, SaaS " Orchestration

" Well-known Providers " Security

Virtualization — The heart of Infrastructure as a 5. QSI Cloud Experimentation
Service (laaS)
" Flavors of virtualization 6. Questions and Discussion
O Challenges and Limitations

® Hypervisors and Virtualization
® OpenStack

The Next Generation Cloud
® Unikernels

® Containers
® Docker
® Micro-services Orchestration

What is Cloud?

® An adoption of Service Oriented Architecture (SOA) principles used to
provide and manage computing resources through integrated service
layers.

® The Traditional Cloud Deployment models
* Public Cloud

* Computing resources made available to the public (multiple organizations),
by a 37 party provider over the Internet (on-demand)

® Security Constraints
* Multi-tenant
* Limited Control

® Can't access the hardware, affect performance/storage location,
etc.

® Difficult orimpossible to achieve compliance requirements
(PCI/SOX)

What is Cloud? Cont.

" Private Cloud

® Computing resources available to a single organization
® Dedicated Hardware (single-tenant environment)
" Security Constraints
= Better Control
®" Dedicated Resources (on-premises),
" Performance Customization, Custom remote/local access
" Security: Easier to achieve compliance requirements (PCI/SOX)

" Goals
* Consumer

O Cost Effectiveness, scalability, availability, reliability, etc.
O Provider

O Make Profits!

Well Known Providers

® There are many...
®* Amazon EC2/AWS
* Google Cloud Platform

Microsoft Azure

Rackspace OpenStack (leading open source)...

= Traditionally an integrated service stack
* laaS (Infrastructure as a service)

O Abstraction/management service layer over physical
infrastructure. Enabled through multilevel
virtualization.

* PaaS (Platform as a service)

O Abstraction/management service layer over the of
execution environment. Typically provides a tailored
operating system, with development tools, and
applications

® SaaS (System as Service)

O Abstraction/management service layer over the

tailored to fully managed applications and services.

Infra
structure

infrastructure and the platform. End users gain access

Traditional Cloud Service Models

Application

Platfarm

CloudClients

Web browser, mobile app, thin client, terminal
emulator, ...

g

Saas

CRM, Email, virtual desktop, communication,
Zames, ...

Paas

Execution runtime, database, web server,
development tools, ...

laas

Virtual machines, servers, storage, load
balancers, network, ...

https://en.wikipedia.org/wiki/Cloud_computing#/
media/File:Cloud_computing_layers.png

The Heart of laaS — Virtualization

* |aaS is achieved with Virtualization (traditionally, virtual machines)

* Hardware Virtualization
O Full Virtualization

* Simulation to allows guest operating systems and software to run
unmodified.

O Para-virtualization

* A software interface that approximates the underlying hardware. VM guest
is modified to use “hooks” provided the interface to communicate directly
with the host to improve performance

O Hardware-assisted virtualization

* Support for virtualization in hardware to improve performance

Virtualization — Hypervisors

" Hypervisor (VMM) — software that manages VMs
* Type-1 (Bare metal)
O Allow VM guests run directly on the hardware
* Citrix XenServer, Microsoft Hyper-V, VMware ESX/ESXi
* Type-2 (Hosted)
O VM guests run atop a host operating system
* VMware Workstation, VMware Player, VirtualBox and QEMU

* KVM (kernel virtual machine) turns Linux OS into a hypervisor

OpenStack

® Leading open source Cloud solution: Rackspace/NASA (2010)

* |Interrelated projects that control pools of processing, storage, and networking
resources throughout a data center—which users manage through a web-based
dashboard, command-line tools, or a RESTful API [1]

O Nova, Glance, Swift, Horizon, Keystone, Neuron, Cinder
* Widely adopted and supported by more than soo companies

O AT&T, AMD, Avaya, Canonical, Cisco, Citrix, Dell, Dreamhost, EMC, Ericsson,
Fujitsu, Go Daddy, Hewlett-Packard, Huawei, IBM, Intel, Internap, Juniper
Networks, Mellanox, Mirantis, NEC, NetApp, Nexenta, Oracle, PLUMgrid, Pure
Storage, Qosmos, Red Hat, SolidFire, SUSE Linux, VMware, VMTurbo...

Source: https://en.wikipedia.org/wiki/OpenStack

OpenStack Hypervisor Model

libvirt

* Isanopensource API, daemon, and nova-compute
management tool for managing
platform virtualization , . . , :

Hyper-V VMWare Xen : LibVirt

* Widely used in the orchestration layer o - o i
of hypervisors in the development of |

a cloud-based solution | Xen || KVM LXC | [QEMU | | UML
:

Source: https:/fen.wikipedia.org/wiki/Libvirt |G ff e Coa i o (o)
ource: . i . T eeee— —— |

“l @@]| @

() (s (Gemsen) (D) ||) H) [) ||)

i e — — — —

https://platformg.com/blog/quide-to-understanding-openstack-esxi/

The Next Steps for Cloud...

1. Operating-System-level virtualization!
* Process isolation achieved in the OS kernel instead of VM
O “Containers”, think BSD jails (chroot), LXC, Trusted Zones (Solaris)

* Docker - afull ecosystem around Containers
2. Micro-services concept!

® (Containers versus Unikernels

O Unikernel — Specialized (single purpose) OS including ONLY the dependencies
of necessary to execute an application

® Rumprun, HalVM, ClickOS, MirageQOS
3. Challenges/Risks?

® Orchestration (Management) and Security is very different!

What's a “"Container”?

" "Containers” — conceptually similar to VMs, but focus is shifted to the application!

Share the Host OS: (no hypervisor, no guest OS), LXC, LibContainer, Etc/

Uses the native system call interface

In Linux, process Isolation, resource control is achieved through kernel namespaces
and cgroups (control groups)

O Applications run inisolation, but run directly on the Host OS (think BSD jails)
O Chief advantage?

* More efficient, and flexible, leading to cost effectiveness
O Risks/Challenges?

* Administration: (control and security is more complex)

* Abstraction is wonderful, but can difficult to troubleshoot when things
go wrong

* |T staff and system developers need to adopt new concepts, and think
differently about the approach to DevOps

Container Concept

Containers vs. VMs

Containers are isolated,
but share OS and, where

ke appropriate, bins/libraries

Container

Docker Engine

Host 05§

"'_ ——— =M uE

Host 05

Server

Server

* Leading (service-oriented) "Container” ecosystem for Linux

Docker

* Official, public, and private repositories

* Only concern and dependencies of the application
* Each application represents a separate layer
® Only pull the layers missing or changed

® Greatly simplifies application

distribution and deployment!

* Docker Cloud: laaS Services based on containers

CaaS (Containers as a Service)

O Applications run in containers, built from read only images, and managed in
"Git-like" registries.

® Public or private: www.dockerhub.com is the official image registry

* Application and dependencies managed in a service stack (layered images)

Union File System Container Layer
Propagation

Modification Layer

Modification Layer

Base Docker Image

HOST OS Kernel

http://www.dockerhub.com/

OpenStack (Nova) "Container” Hypervisor
Orchestration: (libVirt and Docker)

favd cant:
compute_dnver = docker, DockerDireer

| vitAPI |)
= . .
[Illul:al-:ad oy ‘ HEIP" Stk \ Container B |
(yperviscr) docker-reqistry

l | (contsines)

(o)

Source: https://wiki.openstack.org/wiki/Docker

Unikernels: Advantages

® Specialized, single-address-space (single purpose) machine images
constructed by using library operating systems

* Compile high-level language code directly into a specialized
machine image

O Advantages: No general purpose OS, specialized Configuration Mles “H';'I““""“'{”"‘P"L’
.] . ahflication toirce oode
code/image needed for the application Application Binary canfiguration fils
Language Runtime hardware architectun
* Reduced code size and resource footprint , wheissptiem opthiaie
Parallel Threads
* Performance optimization, and fast boot times User Processes | | Appication Code } specialised
_____________ unikernel
. . 0% Kernel Language Runtime oL
* shrink the attack surface, and better security
l-I;,-pm-.'ug:ur Hyper visor
* Transient micro-services concept Hardwire Hardware
: . . .] |
Run directly on a hypervisor, container, or bare-metal http/junikernel.org/

hardware
® Open source work on Unikernels:

O Rumprun, Clive, HaLVM, MirageQS, IncludeOS

Unikernels: Risks and Challenges

" Security

®* micro-services based on unikernels are transient, and
minimize code to reduce attack surface area, however...

® Some unikernels run in privileged mode: (ring o)
® No user/kernel boundary as with traditional OS
" May rely on the hypervisor for multi-tenacy

® A good choice might be to run unikernels in
“*Containers”*

7khttp://www.linuxjournal.com/content/unikerneIs-docker-and-why-you-shouId-care

Unikernels: Risks and Challenges

® Administration and management is difficult!
1. Transience (“Hello?? Are you alive?)

* System instance exists only long enough to service a
request!

* Affects current administration practices/ policy
implementation.

® e.g. patch the webserver! But
wait...webserver only exists long enough to
service a single request!!

® Need for Orchestration!!!

® Lots of approaches for provisioning the
appropriate Orchestration/management
layers.

® Challenge?

® Visibility! Higher layers can't see
problems at lower layers

The Toolbox

Many disparate tools and approaches for the achieving the management
and control required for containers and micro-service based applications to
operate reliably in Cloud deployments.

* Amazon ECS ® Universal Control * Osv

® Azure Container e * OpenStack
Service * Kitematic e Marathon
Diego * Weave e Shipyard
CoreOS Fleet * Powerstrip . GCE
Docker Swarm * Flocker e DNT
S:;)ialee Container Helios e Libnetwork
Kubernetes e ° wag

* LXD

Mesospehere e Mesos

Nomad e Deic

Tools —The Legos of the Cloud

Strata of the Container Ecosystem

- N
Layer 7: O EE; D]:.lS
\;Workflow OPENSHIFT)
e)
(=]
Layer 6: RANCHER [Marathon J
| Orchestration kubernetes)
s N
P . -
Layer 5: 2% MESOS [Omega]
Scheduling b

Layer 4:

Container *docker @ Rocket OS>

Engine

Layer 3:
operating ubuntu® @rednat. @) CoreOs
System

Layer 2: .

. vmware
Virtual gy ia amazon EC 2
Infrastructure

Layer 1: E’I'_..'-.T |
Physical %

Infrastructure Raw compute Network Storage

Mike Metral https://getcarina.com/docs/best-practices/container-technologies-orchestration-clusters/

Container Engines

" Docker (from Docker) *

* Most widely used doc ker

" Rocket (from CoreQS)

* Aimed to be "more secure” — Signed images, User/root separation
® Uses existing init systems '
" LXD (From Canonical)

® REST APl access

More “"VM Like"” - OS container vs Application container
O Docker container hosts

\0

Orchestration

Main goal: To provide automated container management as well as guarantees for multi-
container services and container engines.

® Marathon with Apache Mesosphere(Scheduler) and DC/OS r
* Multiple physical node scaling (treated as one machine)

= Kubernetes (Google Inc.)

® Large scale service oriented design %

* “Self-Healing” services and Load balancing

" Swarm (Docker)

® Standard basic clustering tool

* Native Docker API for third party tool integration

https://docs.mesosphere.com/overview/
https://github.com/coreos/fleet/blob/master/Documentation/fleet-k8s-compared.md

https://docs.mesosphere.com/overview/
https://github.com/coreos/fleet/blob/master/Documentation/fleet-k8s-compared.md

Rancher/RancherQOS

Host-Cluster Management

“Service” Management
®* Qrchestration inside orchestration

® Rancher Cattle, Docker Swarm, Kubernetes, Apache Mesos

™=
RANCHER

Security Management

®* Access Control

O Active Dir, OpenLDAP, GitHub, Rancher local

* Certificate management
Log Management

Registry Management

What is Rancher?

=
RANCHER

.r

Fa
Environment Emvironment |
-
l
|
L

& & 2B

Swarm Mative Rancher Orchestration Kubernetes

[T ———

Rancher Container Infrastructure

User Directory Container Registry

Resources (Clouds, VMs, Servers)

212015 Rancher Labe, Inc

RANCHER

Security

® Inherited risks with chroot
* Secondary chroots back into main filesystem

* Privilege escalations (breaking out of jail)

O Docker Daemon runs as root Linux Capabilities
100%

Ill

O Spawning processes with root privileges from within chroot “jai
® Local network access

. q 75%
® Arbitrary code execution

" Linux capabilities

* Allow granular specification of user abilities
O Example: use of CAP_NET_BIND_SERVICE to bind to TCP port 80
* Containers <= half of root capabilities i %

Bound to application needs -_-
0%

Host bounding set Container bounding set

https://access.redhat.com/blogs/766093/posts/1975883
https://en.wikipedia.org/wiki/Chroot#Limitations
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf

https://access.redhat.com/blogs/766093/posts/1975883
https://en.wikipedia.org/wiki/Chroot%23Limitations
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf

Security Continued

= Uses Linux namespaces and cgroups to mandate resource constraints
* Docker creates a set of namespaces for each container, isolating it from all the other running applications
® Uses cgroups to limit resource consumption/access

® Containerimage validation
® Images decompress as root process

* No current security check of official/non-official images by Dockers (as of yet)

https://access.redhat.com/blogs/766093/posts/1975883
https://en.wikipedia.org/wiki/Chroot#Limitations
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf

https://access.redhat.com/blogs/766093/posts/1975883
https://en.wikipedia.org/wiki/Chroot%23Limitations
https://www.blackhat.com/docs/eu-15/materials/eu-15-Bettini-Vulnerability-Exploitation-In-Docker-Container-Environments.pdf

Experimentation with Containers (QSI)

Rancher vs Rancher OS

Elast
ic
Rancher Elast
[
Manager

Elast
ic

Docker Engine

Linux Virtual Machine

Xen Hypervisor

Physical Machine 1

Physical Machine 2

Rancher
Manager

System
Container

System System
Container Container

User Docker Engine
System Docker Engine

Linux System Kernel

Rancher Orchestration (Elasticsearch)

Physical Machine 1 Physical Machine 2

Managed Rancher Network

\

Elasti Elasti Elasti Elasti Elasti Elasti
c d) c 4 c c

Rancher
Manager

Rancher
Manager

Elasti Elasti Elasti Elasti Elasti Elasti
c d) 4 4 c c

Elasti Elasti Elasti Elasti Elasti Elasti
c d 4 c c

Elasticsearch Cluster

’
|
|
|
|
|
|
|
|
|
|
'
\

L e

’
4

Docker Engine Docker Engine
Linux Virtual Machine Linux Virtual Machine

Xen Hypervisor Xen Hypervisor

-- Elasticsearch instance QSI ClOUd EXperimentS
3] -- Docker daemon

g g g g g g g g g S S Sy

Xen (Type-1) Hypervisor Xen (Type-1) Hypervisor
Physical Location #1 (Physical Location #2

Hardware Hardware

H"‘ APPLICATIONS C (INFRASTRUCTURE ADMIN * API

= =
= @ = & B) Default v
HOSTS CONTAINERS STORAGE POOLS CERTIFICATES REGISTRIES Emvironment
Hosts BablEhts
INACTIVE > ACTIVE Il ACTIVE Il : INACTIVE p|:
rancher RancherGl1 RancherGl2 RancherGI3
& 192.168.3.230 = 1111 & 192.1568.3.235 #1111 & 192.168.3.236 = 1111 & 192.168.3.237 = 1111
3 Ubuntu 14.04.3LTS (3.19.0-32-generic) % Ubuntu 14.04.3 LTS (3.19.0-32-generic) B Ubumtu 14.04.3 LTS (3.19.0-32-generic) O Ubuntu 14.04.3LTS (3.19.0-32-generic)
El4x2.6 GHz E1158GiB B 33.1GiB [E16x2.6 GHz 1312 GiB Basicie [E 16x2.6 GHz E931.2GiB B as1:Gie El16x2.6 GHz E3312GiB B as1GiB
Stack: Default Stack: ElasticsearchCluster Stack: elasticsearch-2 Standalone Containers
() firstcontainer_1 104284127 3 @ _ElasticMaster_1 104211672 3 @ _elasticsearch-masters_1 10425864 3 0 Netwark Agent 1042757 &

. idekicks @
@ ElasticClusterPrime_10 104296251 * Sidekicks © @

Standalone Containers

® ElasticClusterPrime_12 104211141 } ® elasticsearch-clients_1 10.42.21.36
() tender_keller 1721702 3 Sideki 2e
@ CElasticClusterPrime_14 1042193141 &
(0 Network Agent 1042136195 3 @ celasticsearch-datanodes_1 1042100218 ¢
@ ElasticClusterPrime_16 104211072 3
® mike_test_app 1042.30.176 * Sidekicks @ @
@ CElasticClusterPrime_18 10421572356 &
@ mike_test_app 10:4283.104 3
@ ElasticClusterPrime_20 104228152 = Stack: ElasticsearchCluster
INACTIVE b () ElasticMasterPrime_1 1042120254 1§ ® CElasticClusterPrime_1 10425552 3
SUNYRANCH1 () ElasticClusterPrime_2 1042518 3 @ ClasticClusterPrime_2 1042134117
& 192.168.2.188 =~ 1111) ElasticClusterPrime 4 10421311 ° ® CElasticClusterPrime_3 104286225 1}
3 Ubuntu 14.04. 3 LTS (3.19.0-32-generic)
FHizoscHz | E31268 | Hesscs O ElasticClusterPrime_é 104265105 3 ® ClasticClusterPrime 4 1042200200 :
Standalone Containers (0 ElasticClusterPrime_8 10422590 i @ ElasticClusterPrime_5 10.423123 3
() 694452fc-caa5-4d9b-b21b-362172.17.03 ¢ O ElasticClusterPrime_10 1042120212 © @ CElasticClusterPrime 6 1042171199 &
) Network Agent 1042228202 } () ElasticClusterPrime_12 104284137 : ® ElasticClusterPrime_7 1042353107 3
O ElasticClusterPrime_14 10423362 & ® ClasticClusterPrime 8 1042206245 §
(O ElasticClusterPrime_16 1042151181 ® ElasticClusterPrime_9 104223024}
@ CElasticClusterPrime_11 104219122 =

(O _ElasticClusterPrime_18 1042.26.155 *

APPLICATIONS

INFRASTRUCTURE

©

STACKS

stacks

& Active

@ Inactive

& Active

v1.10-devl

elasticsearch-2

elasticsearch-clients + 2 Sidekicks (D

elasticsearch-datanodes + 2 Sidekicks (D

elasticsearch-masters + 2 Sidekicks (@)

kopf (@

ElasticsearchCluster

ElasticClusterQld (D

ElasticClusterPrime (@D

ElasticMaster (O

ElasticMasterPrime (D

Default

firstcontainer (0

Documentation FAQs File an Issue Forums

ADMIN *

API

nage:
mage:

T
mage:

mage:

mage:

mage:

nage
mage

nage:
mage:

T
mage:

mage:

rancher/elasticsearch-conf:v0.5.0

rancher/elasticsearch-conf:v0.5.0

rancher/elasticsearch-conf:v0.5.0

rancher/kopfiv0.4.0

Add Servit

a
m

elasticsearch

s elasticsearch

elasticsearch

elasticsearch Ports: 9200

Add Servit

a
o

ubuntu:14.04.3

Service

Service

Service

Service

Service

Service

Service

Service

Service

{} Default v

Environment

SortBy: | State | Name

Ci)']:i?inel's » |
3 Containers b
3 Containers >
3 Containers >
0 Containers |
CD']?IaZiners >
20 Containers b
20 Containers o:
1 Container b
1 Container ®
Cc:ntiaine-' o
1 Container o :

& Download CLI W

Physical

9 NIC (ethO)
interface ’A

X VM_NET (etho)
tap bridgeo

X X X X X X X X X X

Ubuntu 14.04

% base image

Container1 Container 2 Container 3 Container 4 Container g

Container 6 Container 7 Container 8 Container g

Virtual Machine (VM) Node: Mint 17.1

: ayer1: Qemu ;
Image Y Image Base image: Ubuntu 14.04
Base image: Ubuntu 14.04

Virtualization Inception

NIC (etho) X Hypervisor
Virtual Machine (VM) Host X VM_NET (etho)

X P X X

bro

tap1

Container1 Container 2

ethoX b X tapo ethoX X tapo

ro

E1000 NIC

Virtual Machine (VM) Host

Container1

etho X X tapo

bro

X VM_NET (etho)

X tapa X

X Container 3

etho X X tapo

bro

Container 2

etho X X tapo

bro

Applications as a Stack of Layers

* Update respective layers to
== extend new machine
! Base Image: Bins/Libs | hardware and Operating

| /Dependencies ! \System type

* Running container instance:
build from image
e Shares host OS with
other containers

Hypervisor NIC (etho) (X

Virtual Machine
(VM) Host

Container 1

eth0 X X tapl
br0

QEMU
*

T

Hypervisor NIC (etho) (X

Virtual Machine
(VM) Host

Container 1

eth0 X X tap0

br0

QEMU

tap0
X bri

tap0
X bri

X VM_NET (etho)

- —

Container 2

eth0 tap0
XX

QEMU

X VM_NET (etho)

- —_—

Container 2

ethd tap0
¥

QEMU

 Hardware Emuation g5 el X

Hypervisor

Virtual Machine
(VM) Host

Container 1

eth0 X X tapl
br0

QEMU

=

T

Hypervisor

Virtual Machine
(VM) Host

Container 1

eth0 X X tap0

br0

QEMU

"

T

NIC (etho) X

X VM_NET (etho)

tap0 tapl
X br0 X X

Container 2

eth0 tap0
XX

QEMU

NIC (etho) (X

X VM_NET (etho)

tap0 tapl
X hrﬂx : X

Container 2

ethd tap0
¥

QEMU

Virtual Machine (VM) Host

Container 1

b

GNS3 CISCO Router Simulation

ThankYou!

Questions and Discussion?

	�Next Generation�Cloud-enabled Architectures��2016 New York State Cyber Security Conference�
	Overview
	What is Cloud?
	What is Cloud? Cont.
	Well Known Providers
	Traditional Cloud Service Models
	The Heart of IaaS – Virtualization
	Virtualization – Hypervisors
	OpenStack
	OpenStack Hypervisor Model
	The Next Steps for Cloud…
	What’s a “Container”?
	Slide Number 13
	Docker
	OpenStack (Nova) “Container” Hypervisor Orchestration: (libVirt and Docker)
	Unikernels: Advantages
	Unikernels: Risks and Challenges
	Unikernels: Risks and Challenges
	The Toolbox
	Tools – The Legos of the Cloud
	Container Engines
	Orchestration
	Rancher/RancherOS
	Slide Number 24
	Security
	Security Continued
	Experimentation with Containers (QSI)
	Rancher vs Rancher OS
	Rancher Orchestration (Elasticsearch)
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Virtualization Inception
	Slide Number 35
	Applications as a Stack of Layers
	Slide Number 37
	Thank You!

