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Presentation Objectives

 Software Security
 Challenges in enterprise software security
 What is DevOps
 DevOps Foundations
 Relevance of DevOps to Secuirty
 Lessons learned  from application of 

DevOps
 Recommendations and Resources 



2014-2015 Software Bugs  

 Heart Bleed
 Shellshock
 Poodle
 Gotofail



Growth Software  Vulnerabilities 

Source: National Vulnerability Database 
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Software Security Issues 

 Defects
 Bugs
 Eg. Buffer overflow

 Design Flaws
 Inconsistent error handling 

 Maintenance Hooks
 Backdoors



Software Development Security

 Requires a “holistic” and “proactive” 
approach 
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Software Development Life 
Cycle 

Reference: WikiCommons, http://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg



Software Development Models
 Linear Sequential
 Waterfall model

 Incremental
 Prototyping
 RAD

 Iterative 
 Spiral

 Agile
 Teamwork, Iterative and  

Incremental 



Challenges: Enterprise Software 
Security

 Security not built-in 
 Disconnect between developers, business 

owners, end users and quality assurance 
 Configuration Management  
 No established metrics and continuous 

improvement 
 Complexity and diversity of development 

tools, programming languages, and 
platforms 



What is DevOps

 Lean and Agile methods
 Narrow the disconnect between 

development and business drivers
 Strong collaboration between developers, 

operations,  business, security, and quality 
assurance teams
 Continuously incorporate feedback from 

customers and business owners 



Foundations of DevOps

 Shift Left Concept
 Address operational issues earlier
 Test with systems that behave like production

 Agile and Iterative Approach
 Continuous, automated deployment and testing

 Metrics and evaluation of quality 
 Measure and test effectiveness earlier in the 

development cycle 
 Facilitate feedback from all stakeholders

 Enable all stakeholders to communicate and provide feedback



DevOps Focus   

 Rapid incorporation of customer feedback
 Faster Delivery Process
 Collaboration between disparate teams
 Continuous release and deployment
 Continuous testing
 Ongoing evaluation



DevOps Architecture 
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• Ongoing 
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Shift Left- Operational, Security and End user input



What DevOps is not

 Another Software development model
 Everything runs and tested in production
 Blurs the line between developers, system 

administrators, security
 Tool specific
 A specific job title for DevOps



Relevance of DevOps to 
Security 
 Integration of security in the early stages 

of development
 Security testing in early stages of 

development 
 Strong Cross functional integration
 Configuration management
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State of Affairs

https ://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf



https://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf





Results

Key Findings

 Companies with high-performing IT organizations are 
twice as likely to exceed their profitability, market share 
and productivity goals.

 IT performance improves with DevOps maturity, and 
strongly correlates with well-known DevOps practices.

 Culture matters. The cultural practices of DevOps are 
predictive of organizational performance.

 Job satisfaction is the No. 1 predictor of performance 
against organizational goals.

https://puppetlabs.com/2014-devops-report



http://www.s-sa.co.uk



Organizational Context

 Current Project – Rugged DevOps
 Integrate and promote secure coding 

practices in SDLC across the organization –
Agile, Waterfall.
 700+ developers – Geographically dispersed
 Multiple languages and frameworks (Java, 

PHP, Django, Python, Angular, ColdFusion, 
Ruby, etc.) + Mobile (iOS, Android)
 Training and Education



Success Factors

 Cultural change – i.e. view of software 
security
 Clear repeatable processes
 Software must be scanned before going to 

production
 Policy alignment – remediation timeframe

 Fault detection automation
 Continuous integration – automating unit 

testing and deployment of software



Success Factors

 Security standard adoption for software 
development
 Ability to balance security risks with software 

development agility.
 Improve effectiveness of public facing 

applications
 Usage patterns, break/fix



DevOps Tools



Secure SDLC
 Security requirements need to be defined as early as possible 

during the SDLC



Accomplishments

 Agile Testing (security)
 Secure Coding + Operations + Collaboration
 Developer training and education
 Rapid communication on vulnerability 

intelligence
 Quicker patch cycles/remediation of 

vulnerabilities
 Collaboration between Development and 

Operation



Security Automation

 SAST (Static Application Security Testing)
 Source code, byte code or application binaries for conditions 

indicative of a security vulnerability
 Leverage tools – statics analysis, etc.

 DAST (Dynamic Application Security Testing)
 Black-box (Functional and non-functional), White-box, and 

Defect-based tests.
 Examine application at runtime to identify vulnerabilities
 Robustness testing (i.e. fuzz testing) or fault-injection

 Integrate with build and code repositories
 GIT, Bamboo, Jenkins, etc.



Realized Benefits

 Identify problems early
 Continuous integration
 Infrastructure automation 
 System stability and uptime
 Monitoring
 Deployment 
 Continuous delivery – testing



Challenges

 Misaligned tools and processes
 Competing interests (development vs 

operation)
 Infighting – who’s at fault when something 

happens
 Documentation
 Varying views of security and roles



Lessons Learned

 Require resources – People
 Cannot be done in a vacuum, dynamic
 Align IT with the business
 Leverage internal talent
 Visibility of applications – Customer 

experience, including components (server, 
DB, etc.)
 Training and education



Recommendations

 Start at the Top
 Organization buy-in and support

 Measure Success – metrics 
 Deployment frequency
 Mean time to recover (MTTR)

 Identify system failures / waste 
 Automate where possible (puppet, etc.)

 Decompose system components into 
modules 



 Identify a champion in each department
 Establish a center of excellence



Resources

 http://www.rackspace.com/blog/enterprise-cloud-forum-
recap-prepare-for-devops-success/

 http://www.isaca.org/knowledge-
center/research/researchdeliverables/pages/devops-
overview.aspx

 https://puppetlabs.com/2013-state-of-devops-infographic
 https://puppetlabs.com/sites/default/files/2014-state-of-

devops-report.pdf


