
We DevOps’d – Experience and
Lessons Learned Securing the

SDLC

Sherly Abraham, PhD., Excelsior College
Din Cox, PhD., CISSP, ISSAP, ISSMP, CSSLP, CISA,

CISM, CRISC, CEH, etc.,
Medical Science and Computing, LLC

Sherly Abraham, Ph.D.

 Excelsior College
 Program Director for Cybersecurity

 Research Interests
 Software Security
 Information Security Training
 Corporate Governance

Presentation Objectives

 Software Security
 Challenges in enterprise software security
 What is DevOps
 DevOps Foundations
 Relevance of DevOps to Secuirty
 Lessons learned from application of

DevOps
 Recommendations and Resources

2014-2015 Software Bugs

 Heart Bleed
 Shellshock
 Poodle
 Gotofail

Growth Software Vulnerabilities

Source: National Vulnerability Database

Number of
Vulnerabilities
caused by
Software Flaws

Software Security Issues

 Defects
 Bugs
 Eg. Buffer overflow

 Design Flaws
 Inconsistent error handling

 Maintenance Hooks
 Backdoors

Software Development Security

 Requires a “holistic” and “proactive”
approach

Software
Security

Design
Secure

Build
Secure

Testing for
Security

Educating
Developers
and users

Software Development Life
Cycle

Reference: WikiCommons, http://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg

Software Development Models
 Linear Sequential
 Waterfall model

 Incremental
 Prototyping
 RAD

 Iterative
 Spiral

 Agile
 Teamwork, Iterative and

Incremental

Challenges: Enterprise Software
Security

 Security not built-in
 Disconnect between developers, business

owners, end users and quality assurance
 Configuration Management
 No established metrics and continuous

improvement
 Complexity and diversity of development

tools, programming languages, and
platforms

What is DevOps

 Lean and Agile methods
 Narrow the disconnect between

development and business drivers
 Strong collaboration between developers,

operations, business, security, and quality
assurance teams
 Continuously incorporate feedback from

customers and business owners

Foundations of DevOps

 Shift Left Concept
 Address operational issues earlier
 Test with systems that behave like production

 Agile and Iterative Approach
 Continuous, automated deployment and testing

 Metrics and evaluation of quality
 Measure and test effectiveness earlier in the

development cycle
 Facilitate feedback from all stakeholders

 Enable all stakeholders to communicate and provide feedback

DevOps Focus

 Rapid incorporation of customer feedback
 Faster Delivery Process
 Collaboration between disparate teams
 Continuous release and deployment
 Continuous testing
 Ongoing evaluation

DevOps Architecture

Development

• Ongoing
integration

Testing

• Ongoing
testing

Production

• Ongoing
monitoring

Shift Left- Operational, Security and End user input

What DevOps is not

 Another Software development model
 Everything runs and tested in production
 Blurs the line between developers, system

administrators, security
 Tool specific
 A specific job title for DevOps

Relevance of DevOps to
Security
 Integration of security in the early stages

of development
 Security testing in early stages of

development
 Strong Cross functional integration
 Configuration management

Din Cox, Ph.D

 Medical Science and Computing, LLC
 Application Security Focus

 Research Interests
 Mobile and Application Security
 Biometrics
 Machine Learning

 SynAck Red Team Security Researcher
 Bug hunter

State of Affairs

https ://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf

https://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf

Results

Key Findings

 Companies with high-performing IT organizations are
twice as likely to exceed their profitability, market share
and productivity goals.

 IT performance improves with DevOps maturity, and
strongly correlates with well-known DevOps practices.

 Culture matters. The cultural practices of DevOps are
predictive of organizational performance.

 Job satisfaction is the No. 1 predictor of performance
against organizational goals.

https://puppetlabs.com/2014-devops-report

http://www.s-sa.co.uk

Organizational Context

 Current Project – Rugged DevOps
 Integrate and promote secure coding

practices in SDLC across the organization –
Agile, Waterfall.
 700+ developers – Geographically dispersed
 Multiple languages and frameworks (Java,

PHP, Django, Python, Angular, ColdFusion,
Ruby, etc.) + Mobile (iOS, Android)
 Training and Education

Success Factors

 Cultural change – i.e. view of software
security
 Clear repeatable processes
 Software must be scanned before going to

production
 Policy alignment – remediation timeframe

 Fault detection automation
 Continuous integration – automating unit

testing and deployment of software

Success Factors

 Security standard adoption for software
development
 Ability to balance security risks with software

development agility.
 Improve effectiveness of public facing

applications
 Usage patterns, break/fix

DevOps Tools

Secure SDLC
 Security requirements need to be defined as early as possible

during the SDLC

Accomplishments

 Agile Testing (security)
 Secure Coding + Operations + Collaboration
 Developer training and education
 Rapid communication on vulnerability

intelligence
 Quicker patch cycles/remediation of

vulnerabilities
 Collaboration between Development and

Operation

Security Automation

 SAST (Static Application Security Testing)
 Source code, byte code or application binaries for conditions

indicative of a security vulnerability
 Leverage tools – statics analysis, etc.

 DAST (Dynamic Application Security Testing)
 Black-box (Functional and non-functional), White-box, and

Defect-based tests.
 Examine application at runtime to identify vulnerabilities
 Robustness testing (i.e. fuzz testing) or fault-injection

 Integrate with build and code repositories
 GIT, Bamboo, Jenkins, etc.

Realized Benefits

 Identify problems early
 Continuous integration
 Infrastructure automation
 System stability and uptime
 Monitoring
 Deployment
 Continuous delivery – testing

Challenges

 Misaligned tools and processes
 Competing interests (development vs

operation)
 Infighting – who’s at fault when something

happens
 Documentation
 Varying views of security and roles

Lessons Learned

 Require resources – People
 Cannot be done in a vacuum, dynamic
 Align IT with the business
 Leverage internal talent
 Visibility of applications – Customer

experience, including components (server,
DB, etc.)
 Training and education

Recommendations

 Start at the Top
 Organization buy-in and support

 Measure Success – metrics
 Deployment frequency
 Mean time to recover (MTTR)

 Identify system failures / waste
 Automate where possible (puppet, etc.)

 Decompose system components into
modules

 Identify a champion in each department
 Establish a center of excellence

Resources

 http://www.rackspace.com/blog/enterprise-cloud-forum-
recap-prepare-for-devops-success/

 http://www.isaca.org/knowledge-
center/research/researchdeliverables/pages/devops-
overview.aspx

 https://puppetlabs.com/2013-state-of-devops-infographic
 https://puppetlabs.com/sites/default/files/2014-state-of-

devops-report.pdf

