
We DevOps’d – Experience and
Lessons Learned Securing the

SDLC

Sherly Abraham, PhD., Excelsior College
Din Cox, PhD., CISSP, ISSAP, ISSMP, CSSLP, CISA,

CISM, CRISC, CEH, etc.,
Medical Science and Computing, LLC

Sherly Abraham, Ph.D.

 Excelsior College
 Program Director for Cybersecurity

 Research Interests
 Software Security
 Information Security Training
 Corporate Governance

Presentation Objectives

 Software Security
 Challenges in enterprise software security
 What is DevOps
 DevOps Foundations
 Relevance of DevOps to Secuirty
 Lessons learned from application of

DevOps
 Recommendations and Resources

2014-2015 Software Bugs

 Heart Bleed
 Shellshock
 Poodle
 Gotofail

Growth Software Vulnerabilities

Source: National Vulnerability Database

Number of
Vulnerabilities
caused by
Software Flaws

Software Security Issues

 Defects
 Bugs
 Eg. Buffer overflow

 Design Flaws
 Inconsistent error handling

 Maintenance Hooks
 Backdoors

Software Development Security

 Requires a “holistic” and “proactive”
approach

Software
Security

Design
Secure

Build
Secure

Testing for
Security

Educating
Developers
and users

Software Development Life
Cycle

Reference: WikiCommons, http://commons.wikimedia.org/wiki/File:SDLC_-_Software_Development_Life_Cycle.jpg

Software Development Models
 Linear Sequential
 Waterfall model

 Incremental
 Prototyping
 RAD

 Iterative
 Spiral

 Agile
 Teamwork, Iterative and

Incremental

Challenges: Enterprise Software
Security

 Security not built-in
 Disconnect between developers, business

owners, end users and quality assurance
 Configuration Management
 No established metrics and continuous

improvement
 Complexity and diversity of development

tools, programming languages, and
platforms

What is DevOps

 Lean and Agile methods
 Narrow the disconnect between

development and business drivers
 Strong collaboration between developers,

operations, business, security, and quality
assurance teams
 Continuously incorporate feedback from

customers and business owners

Foundations of DevOps

 Shift Left Concept
 Address operational issues earlier
 Test with systems that behave like production

 Agile and Iterative Approach
 Continuous, automated deployment and testing

 Metrics and evaluation of quality
 Measure and test effectiveness earlier in the

development cycle
 Facilitate feedback from all stakeholders

 Enable all stakeholders to communicate and provide feedback

DevOps Focus

 Rapid incorporation of customer feedback
 Faster Delivery Process
 Collaboration between disparate teams
 Continuous release and deployment
 Continuous testing
 Ongoing evaluation

DevOps Architecture

Development

• Ongoing
integration

Testing

• Ongoing
testing

Production

• Ongoing
monitoring

Shift Left- Operational, Security and End user input

What DevOps is not

 Another Software development model
 Everything runs and tested in production
 Blurs the line between developers, system

administrators, security
 Tool specific
 A specific job title for DevOps

Relevance of DevOps to
Security
 Integration of security in the early stages

of development
 Security testing in early stages of

development
 Strong Cross functional integration
 Configuration management

Din Cox, Ph.D

 Medical Science and Computing, LLC
 Application Security Focus

 Research Interests
 Mobile and Application Security
 Biometrics
 Machine Learning

 SynAck Red Team Security Researcher
 Bug hunter

State of Affairs

https ://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf

https://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf

Results

Key Findings

 Companies with high-performing IT organizations are
twice as likely to exceed their profitability, market share
and productivity goals.

 IT performance improves with DevOps maturity, and
strongly correlates with well-known DevOps practices.

 Culture matters. The cultural practices of DevOps are
predictive of organizational performance.

 Job satisfaction is the No. 1 predictor of performance
against organizational goals.

https://puppetlabs.com/2014-devops-report

http://www.s-sa.co.uk

Organizational Context

 Current Project – Rugged DevOps
 Integrate and promote secure coding

practices in SDLC across the organization –
Agile, Waterfall.
 700+ developers – Geographically dispersed
 Multiple languages and frameworks (Java,

PHP, Django, Python, Angular, ColdFusion,
Ruby, etc.) + Mobile (iOS, Android)
 Training and Education

Success Factors

 Cultural change – i.e. view of software
security
 Clear repeatable processes
 Software must be scanned before going to

production
 Policy alignment – remediation timeframe

 Fault detection automation
 Continuous integration – automating unit

testing and deployment of software

Success Factors

 Security standard adoption for software
development
 Ability to balance security risks with software

development agility.
 Improve effectiveness of public facing

applications
 Usage patterns, break/fix

DevOps Tools

Secure SDLC
 Security requirements need to be defined as early as possible

during the SDLC

Accomplishments

 Agile Testing (security)
 Secure Coding + Operations + Collaboration
 Developer training and education
 Rapid communication on vulnerability

intelligence
 Quicker patch cycles/remediation of

vulnerabilities
 Collaboration between Development and

Operation

Security Automation

 SAST (Static Application Security Testing)
 Source code, byte code or application binaries for conditions

indicative of a security vulnerability
 Leverage tools – statics analysis, etc.

 DAST (Dynamic Application Security Testing)
 Black-box (Functional and non-functional), White-box, and

Defect-based tests.
 Examine application at runtime to identify vulnerabilities
 Robustness testing (i.e. fuzz testing) or fault-injection

 Integrate with build and code repositories
 GIT, Bamboo, Jenkins, etc.

Realized Benefits

 Identify problems early
 Continuous integration
 Infrastructure automation
 System stability and uptime
 Monitoring
 Deployment
 Continuous delivery – testing

Challenges

 Misaligned tools and processes
 Competing interests (development vs

operation)
 Infighting – who’s at fault when something

happens
 Documentation
 Varying views of security and roles

Lessons Learned

 Require resources – People
 Cannot be done in a vacuum, dynamic
 Align IT with the business
 Leverage internal talent
 Visibility of applications – Customer

experience, including components (server,
DB, etc.)
 Training and education

Recommendations

 Start at the Top
 Organization buy-in and support

 Measure Success – metrics
 Deployment frequency
 Mean time to recover (MTTR)

 Identify system failures / waste
 Automate where possible (puppet, etc.)

 Decompose system components into
modules

 Identify a champion in each department
 Establish a center of excellence

Resources

 http://www.rackspace.com/blog/enterprise-cloud-forum-
recap-prepare-for-devops-success/

 http://www.isaca.org/knowledge-
center/research/researchdeliverables/pages/devops-
overview.aspx

 https://puppetlabs.com/2013-state-of-devops-infographic
 https://puppetlabs.com/sites/default/files/2014-state-of-

devops-report.pdf

